표제지
목차
제 1 장 서론 2
제 2 장 재료 및 방법 5
2.1. 바지락 5
2.1.1. 생물·생태학적특성 5
2.1.2. 채집 6
2.1.3. 수온·염분 순응 및 절식 6
2.1.4. 연령사정 6
2.1.5 각장 및 중량 측정 7
2.2. 황토 7
2.2.1. 채취 7
2.2.2. 실험용액제조 8
2.2.3. 실험농도 10
2.2.4. 실험액 입도분석 10
2.3. 먹이생물 12
2.3.1 배양 12
2.3.2 고정 및 계수 15
2.4 실내 실험방법 15
2.5 여과율 측정 16
제 3 장 결과 19
3.1. SS농도별 사망률 19
3.1.1. 사망률 실험결과 19
3.2. 고농도에서의 여과율 24
3.2.1. 고농도에서의 여과율 실험결과 24
3.3 SS농도·수온별 바지락의 여과율 변동 26
3.3.1. 실험액 입도조성 26
3.3.2. 연령별 바지락의 각장 및 육질부 건중량 28
3.3.3. SS농도별 바지락의 여과율 변동 28
3.3.3.1. 연령별 바지락의 여과율 변동 32
3.3.3.2. SS농도에 따른 여과율의 변화 32
3.3.4. 수온별 바지락의 여과율 변동 39
3.3.4.1. 연령별 바지락의 여과율 변동 42
3.3.4.2. 다항회귀분석 및 온도 계수 Q10 값의 비교 42
제 4 장 고 찰 53
4.1. 바지락의 연륜 및 채집 시기 53
4.2. 순응 및 절식 54
4.3. 섭식 행동의 판정 54
4.4. 부유물 농도감소의 지표물질 55
4.5. 황토 및 침강속도 56
4.6. SS농도와 사망률 59
4.7. SS농도가 여과율에 미치는 영향 60
4.8. 수온이 여과율에 미치는 영향 61
제 5 장 요약 및 결론 64
참고문헌 67
감사의 글 76
Appendix 78
Abstract 94
Fig. 1. The procedure of the loess suspension experiment 9
Fig. 2. Concentrations of the loess suspension 11
Fig. 3. Procedure of algal culture at the present study; Culture conditions were controlled as follows- Temperature 20±1℃, Salinity 32±1psu, pH 7.8 ±0.1 and L24:D0(culture room), respectively 13
Fig. 4. The procedure of the feeding experiment 17
Fig. 5. The procedure of motality rate experiment 20
Fig. 6. Change of survival rate in relation to SS 23
Fig. 7. Influence of SS(ppm) concentration on filtration rates of 2∼3 years class short-necked clams 25
Fig. 8. Ternary diagram showing the grain size composition of loess suspension 27
Fig. 9. Influence of SS on filtration rate of 1-yr class short -necked clams( Salinity : 32psu, pH : 7.8? ) 30
Fig. 10. Influence of SS on filtration rate of 2-yr class short-necked clams( Salinity : 32psu, pH : 7.8? ) 31
Fig. 11. Influence of SS on filtration rate of 3-yr class short-necked clams( Salinity : 32psu, pH : 7.8? ) 33
Fig. 12. Influence of SS on filtration rate of 1??-yr class short-necked clams( Salinity : 32psu, pH : 7.8? ) 34
Fig. 13. Change of filtration rate in relation to SS with age of clam 35
Fig. 14. The procedure of critical impact point 37
Fig. 15. Influence of temperature on filation rates of 1-yr class short-necked clams 40
Fig. 16. Influence of temperature on filation rates of 2-yr class short-necked clams 41
Fig. 17. Influence of temperature on filation rates of 3-yr class short-necked clams 43
Fig. 18. Change of filtration rate in relation to temperature with of clams 44
Table 1. Loess suspension used in the experiment 11
Table 2. Compotion of f/2 medium 14
Table 3. Cumulative motality rate(%) of Ruditapes philippinarum by SS concentration in 5℃ 21
Table 4. Cumulative motality rate(%) of Ruditapes philippinarum by SS concentration in 10℃ 21
Table 5. Cumulative motality rate(%) of Ruditapes philippinarum by SS concentration in 15℃ 21
Table 6. Cumulative motality rate(%) of Ruditapes philippinarum by SS concentration in 20℃ 21
Table 7. Cumulative motality rate(%) of Ruditapes philippinarum by SS concentration in 25℃ 22
Table 8. Cumulative motality rate(%) of Ruditapes philippinarum by SS concentration in 30℃ 22
Table 9. Shell length and dry tissue weight of Ruditapes philippinarum in high concentration study 24
Table 10. Grain size composition of the loess suspension 26
Table 11. Shell length and dry tissue weight of Ruditapes philippinarum in present study 29
Table 12. Critical impact point of SS concentration on filtration rate 36
Table 13. Slope of SS concentration on filtration rate of 0∼1ppm 38
Table 14. Slope of SS concentration on filtration rate of 10∼100ppm 38
Table 15. Maximal filtration rates(FRmax) of Ruditapes philippinarum derived from polynomail regressions 45
Table 16. Thermal coefficients(Q10) in filtration rates by the short-necked clams 47
Table 17. Thermal coefficients (Q10) in filtration rates by several lamellibranchiate bivalves 63