표제지
눈문요약본
목차 17
I. 서론 26
1.1 연구배경 26
1.2 슬러지 침전분리문제 28
1.2.1 2 차 침전지의 기능 28
(1) 고형물의 이동 28
(2) 2차 침전지에서 고형물 수지 30
(3) 침전지의 기능과 역할 31
1.2.2 벌킹 33
1.2.3 거품 35
1.2.4 기타 침전분리문제 36
1.3 목적 38
1.4 연구내용 38
II. 연구방법 39
2.1 연구대상 하수처리장 39
2.2 슬러지 침전성 분석 41
2.3 슬러지 블랑킷 깊이의 측정 41
2.4 수질분석 42
2.5 원인 미생물의 동정 43
2.6 사상균의 길이 및 플럭형성 분석 43
III. 연구결과 및 고찰 44
3.1 연구대상 하수처리장 침전문제의 진단 44
3.1.1 진단결과 44
(1) 벌킹 44
(2) 포기조 및 2차 침전지 거품문제 45
3.1.2 사상체의 판정결과 47
3.2 Microthrix 벌킹/거품문제의 해결 56
3.2.1 사상체의 증식요인 56
3.2.2 탈수기 확충을 통한 SRT의 감축 60
3.2.3 Microthrix parvicella의 발생추이 61
3.2.4 Filament의 길이 변화 64
3.2.5 SV30/SVI의 변화 64
3.2.6 슬러지 블랑킷 깊이 66
3.2.7 거품발생추이 68
3.3 염소처리실험 71
3.3.1 염소처리 71
3.3.2 염소처리 실험결과 73
3.4 2차 침전지에서 플럭의 형상 80
3.4.1 플럭 size 분포 80
3.4.2 Filament length 84
3.4.3 플럭의 형태 85
3.4.4 기술제안 87
3.5 Microthrix가 처리성능에 미치는 영향 89
3.5.1 공정수질분석결과 89
3.5.2 유입하수수질 92
3.5.3 영양소제거공정 93
3.5.4 총괄성능 96
IV. 종합평가 및 결론 99
4.1 슬러지 침전문제의 진단 99
4.2 슬러지 벌킹제어 99
4.3 벌킹제어방법 99
4.4 벌킹문제 해결시 예상되는 문제점 100
4.5 2차 침전지에서 벌킹 슬러지의 침전양상 100
참고문헌 101
ABSTRACT 107
부록 109
부록.1 Process water quality data 109
부록.2 Microphotograph collection 119
Table.1. Causes of sludge bulking and filaments 34
Table.2. Dimension of the treatment processes 40
Table.3. Evaluation of the sludge settling characteristics 44
Table.4. Total filament length 47
Table.5. Identification results of the causative filamentous microorganism 51
Table.6. SS concentration recycled from sludge treatment facilities to the head of processes 61
Table.7. Summarized results of sludge chlorination 77
Table.8. Chlorination parameters suggested in literatures 78
Table.9. Chlorination parameters for two different options 79
Table.10. Summarized process data 90
Table.11. Overall treatment performance 91
Fig. 1. Diagram of the waste water and sludge flows in BNR processes 29
Fig. 2. Functions of the secondary settling tanks 32
Fig. 3. Types of sludge floc 37
Fig. 4. Municipal wastewater treatment plant: process diagram 39
Fig. 5. Location of sludge blanket sampling 41
Fig. 6. Occurrence of bulking/foaming and monitoring parameter and sampling point 42
Fig. 7. Comparison of the zone settling velocity 45
Fig. 8. Dichotomous key for filamentous microorganism "identification" in activated sludge 52
Fig. 9. Pathway of the M. parvicella in the processes 57
Fig. 10. Decrease of the sludge residence time 60
Fig. 11. TFL changes in MLSS during the period of study 64
Fig. 12. Changes of the SV30 and SVI values during the period of study 65
Fig. 13. Relationship between filament length and SVI 66
Fig. 14. Changes of the average SBD in clarifiers 67
Fig. 15. Changes of the average SBSS concentration 67
Fig. 16. Various chlorination points 71
Fig. 17. Settling curve according to chlorine dosage rate 76
Fig. 18. Cumulative floc size distribution in a longitudinal direction of clarifiers (a: SBD#1, b: SBD#7, c: SBD#12) 81
Fig. 19. Comparison between median floc sizes 82
Fig. 20. Filament length in an unit volume of sludge 84
Fig. 21. Normalized filament length 85
Fig. 22. Conceptual diagram of double hopper settling tanks 88
Fig. 23. Organic matters in raw sewage 92
Fig. 24. Contribution of the recycled flows to the loadings 93
Fig. 25. Changes of the SCOD, nitrogen and phosphorus species 94
Fig. 26. Nitrogen fraction in the final effluent 95
Fig. 27. Pfraction in the final effluent 95
Fig. 28. Changes of the water quality parameters during two different periods 97
Fig. 29. Comparison of the portion-P 98
Photo.1. Measurement of the floc size and filament length 43
Photo.2. Foaming problem in oxic tank 46
Photo.3. Foaming problem in secondary settling tank 46
Photo.4. Microphotographs of MLSS and foam (2 times diluted 100×; a MLSS, b foam) Diffuse floc structures with different sizes and difficult to observe the presence of filament in 100× 48
Photo.5. Microphotographs of MLSS and foam (400×; a, b MLSS, c, d foam). Filaments extending from floc surface of MLSS and foam. More filaments can be observed in foam than in MLSS. Staining reaction: G+ 49
Photo.6. Microphotographs of MLSS and foam (100×; a MLSS, b foam, 400 ×; c MLSS d foam). Compac tfloc is observed in foam where as loose floc is observed in MLSS. foam: excessive filament. MLSS: common. Staining reaction: G+ 50
Photo.7. Gram stain reaction (400×; a MLSS, b, c foam) G+ as well as G-filaments can be observed Neisser stain reaction (1000×; d MLSS, e, f foam) N+ as well as N- filaments can be observed 53
Photo.8. PHB reaction (1000×; a, b MLSS, c, d foam). foam (phase contrast 1000×; e, f) 54
Photo.9. SEM image (a, b, c MLSS, d, e, f foam). No branching. Spagetti-like filament : M. parvicella. Diameter [ 1 ㎛, Length] 400㎛ 55
Photo.10. M. parvicella in recycled stream, (1000×; a, b, c, d) 57
Photo.11. Microphotographs of MLSS and foam (100×) 62
Photo.12. Microphotographs of MLSS and foam (400×) 63
Photo.13. Changes in the amount of foam in secondary settling tank. (Pictures taken from a fixed pointin secondary settling tank) 69
Photo.14. Changes in the amount of foam in secondary settling tank.(Pictures taken from a fixed pointin secondary settling tank) Continue 70
Photo.15. Use of 4% NaOCl for chlorination (100×; a: control, b: 0.2mL, c: 0.5mL, d: 0.8mL, e: 1.0mL, f: 1.2mL). More fragment of filaments are observed as the chlorine dose is increased 74
Photo.16. Use of 4% NaOCl for chlorination (400×; a: control, b: 0.2mL, c: 0.5mL, d: 0.8mL, e: 1.0mL, f: 1.2mL). More fragment of filaments are observed as the chlorine dose is increased 75
Photo.17. Typical shape and size of the flocs in the sludge blanket sludge (a, b: SBD #1, c, d: SBD #7, e, f: SBD #12) 86
Table.1 Process water quality data (2005.4.13) 109
Table.2 Process water quality data(2005.4.20) 110
Table.3 Process water quality data(2005.4. 27) 111
Table.4 Process water quality data(2005.5.4) 112
Table.5 Process water quality data(2005.5.11) 113
Table.6 Process water quality data(2005.5.18) 114
Table.7 Process water quality data(2005.5.25) 115
Table.8 Process water quality data(2005.6.1) 116
Table.9 Process water quality data(2005.6.8) 117
Table.10 Process water quality data(2005.6.15) 118
부록사진목차
Photo.1 Microphotographs of MLSS and foam (100×, MLSS; a, b, c, foam ; d, e, f).2005.4. 20 119
Photo.2 Microphotographs of MLSS and foam (400×, MLSS; a, b, c, foam ; d, e, f).2005.4. 20 120
Photo.3 Microphotographs of MLSS and foam (100×, MLSS; a, b, c, foam ; d, e, f).2005.4. 27 121
Photo.4 Microphotographs of MLSS and foam (400×, MLSS ; a, b, c, foam ;d, e, f).2005.4 .27 122
Photo.5 Microphotographs of MLSS and foam (100×, MLSS ; a, b, c, foam ; d, e, f ).2005.5 .4 123
Photo.6 Microphotographs of MLSS and foam (400×, MLSS ; a, b, c, foam ; d, e, f).2005.5 .4 124
Photo.7 Microphotographs of MLSS and foam (100×, MLSS ;a, b, c, foam ; d, e, f).2005.5 .11 125
Photo.8 Microphotographs of MLSS and foam (400×, MLSS ; a, b, c, foam ; d, e, f).2005.5 .11 126
Photo.9 Microphotographs of MLSS and foam (100×, MLSS ;a, b, c, foam ; d, e, f).2005.5 .18 127
Photo.10 Microphotographs of MLSS and foam (400×, MLSS ; a, b, c, foam ; d, e, f).2005.5 .18 128
Photo.11 Microphotographs of MLSS and foam (100×, MLSS ;a, b, c, foam ;d, e, f).2005.5 .25 129
Photo.12 Microphotographs of MLSS andf oam (400×, MLSS ;a, b, c, foam ;d, e, f).2005.5 .25 130
Photo.13 Microphotographs of MLSS and foam (100×, MLSS ;a, b, c, foam ;d, e, f).2005.6 .1 131
Photo.14 Microphotographs of MLSS and foam (400×, MLSS ;a, b, c, foam ;d, e, f).2005.6 .1 132
Photo.15 Microphotographs of MLSS and foam (100×, MLSS ;a, b, c, foam ;d, e, f).2005.6 .8 133
Photo.16 Microphotographs of MLSS and foam (400×, MLSS ;a, b, c, foam ;d, e, f).2005.6 .8 134
Photo.17 Microphotographs of MLSS and foam (100×, MLSS ;a, b, c, foam ;d, e, f).2005.6 .15 135
Photo.18 Microphotographs of MLSS and foam (400×, MLSS ;a, b, c, foam ;d, e, f).2005.6 .15 136