Title Page
ABSTRACT
Contents
LIST OF ABBREBIATIONS 17
CHAPTER 1. INTRODUCTION 20
1.1. Introduction 20
1.2. Motivation 22
1.3. Problem Statement 23
1.4. Thesis Contribution 24
1.5. Organization of the Thesis 24
CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 26
2.1. Introduction 26
2.2. Standardization 27
2.3. Evolution before LTE 29
2.4. LTE and LTE-Advanced 32
2.4.1. Long Term Evolution 32
2.4.2. System Structure 39
2.4.3. Physical Channel 41
2.5. Femtocell Technology 49
2.5.1. Femtocell Concept 49
2.5.2. The Need for Femtocell 51
2.5.3. Interference Mitigation in Femtocell 53
2.6. Inter-Cell Interference Management in Heterogeneous Networks 55
2.6.1. Inter-Cell Interference Management 55
2.6.2. Almost Blank Subframes 62
CHAPTER 3. GENERAL INTERFERENCE COORDINATION FOR ENTERPRISE FEMTOCELL NETWORKS 66
3.1. Introduction 66
3.2. System Models 66
3.2.1. Simulation Environment 66
3.2.2. System Assumption 67
3.2.3. Channel Model 68
3.3. Performance analysis of mUE/fUE by position of EFN 70
3.3.1. Simulation Results 70
3.4. Summary 77
CHAPTER 4. NETWORK ARCHITECTURE FOR ENTERPRISE FEMTOCELL NETWORKS 78
4.1. Introduction 78
4.2. System Model 79
4.2.1. Simulation Environment 79
4.2.2. Simulation Assumption 79
4.2.3. Simulation parameters 80
4.2.4. Performance Indicator 81
4.2.5. Femtocell and ABS 81
4.3. Performance Analysis of EFN Structure for EFN 82
4.3.1. Proposed Architecture using Interface b/w Macrocell and EFN 82
4.3.2. Proposed System Structures 84
4.3.3. Results 86
4.4. Performance Analysis of EFN using SS for Control Channel 90
4.4.1. Three Schemes using ABS and SS to avoid Interference 91
4.4.2. Additional Schemes using ABS and SS to avoid Interference 92
4.4.3. Results 94
4.5. Summary 98
CHAPTER 5. INTERFERENCE COORDINATION USING ABS FOR ENTERPRISE FEMTOCELL NETWORKS 99
5.1. Introduction 99
5.2. System Model 100
5.2.1. Simulation Environment 100
5.2.2. System Assumption 102
5.2.3. Performance Indicators 103
5.3. Interference Mitigation Schemes for Data Channel 106
5.3.1. Almost blank subframe Resource Control(ARC) 107
5.3.2. Femtocell Resource Control(FRC) 108
5.3.3. ABS & Femtocell Resource Control Scheme(AFRC) 111
5.3.4. Simulation Results 112
5.4. Interference Coordination using ABS for Data Channel 120
5.4.1. Adaptive ABS Resource Control(A-ARC) 120
5.4.2. Adaptive ABS & Femtocell Resource Control Scheme(A-AFRC) 124
5.4.3. Simulation Results 126
5.5. Summary 134
CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 136
6.1. Conclusion 136
REFERENCE 138
Table 2.1. Channel bandwidth 41
Table 3.1. System environment summary 67
Table 4.1. Simulation parameters 80
Table 5.1. The parameter of (5.1) 103
Table 5.2. The parameter of (5.2) 104
Table 5.3. The parameter of (5.3) 104
Table 5.4. The MCS table of (5.3) 105
Table 5.5. The parameter of (5.4) 105
Table 5.6. The parameter of FRC algorithm 108
Table 5.7. The pseudocode of FRC algorithm 109
Table 5.8. The parameter of A-ARC algorithm 121
Table 5.9. The pseudocode of A-ARC algorithm 122
Table 5.10. Result Summary 135
Figure 2.1. Timeline of the Mobile Communication standards 28
Figure 2.2. 3GPP members 29
Figure 2.3. Evolution of Cellular Communication 31
Figure 2.4. Overall E-UTRAN Architecture 33
Figure 2.5. Overall E-UTRAN Architecture with deployed HeNB GW 37
Figure 2.6. Frame structure of LTE system using FDD 39
Figure 2.7. Channel group of LTE system 40
Figure 2.8. Logical and physical channel of LTE system 42
Figure 2.9. Allocated position of PBCH 44
Figure 2.10. Allocated position of PDCCH 45
Figure 2.11. Allocated position of PCFICH 46
Figure 2.12. Allocated position of PHICH 47
Figure 2.13. Control channel mapping 48
Figure 2.14. Comparison of cell sizes of different technologies 51
Figure 2.15. Projected Mobile Data Traffic Growth 56
Figure 2.16. Frame structure for heterogeneous networks with eICIC(Almost blank subframes are applied for TDM-based control and data ICIC) 63
Figure 2.17. e-ICIC solutions: time shifting 64
Figure 3.1. Simulation environment 67
Figure 3.2. 3-sector mBS anatenna 69
Figure 3.3. The fUE outage probability by WL and distance b/w mBS and EFN 71
Figure 3.4. The SIR of fUE in EFN(Dist. b/w mBS : 100m) 72
Figure 3.5. The SIR of fUE in EFN(Dist. b/w mBS : 300m) 73
Figure 3.6. The SIR of mUE in EFN(Dist. b/w mBS : 100m) 74
Figure 3.7. The SIR of mUE in EFN(Dist. b/w mBS : 300m) 75
Figure 3.8. The mUE/fUE outage probability by distance b/w mBS and EFN 76
Figure 3.9. The outage probability zone of 5% in EFN 77
Figure 4.1. Simulation Topology 79
Figure 4.2. The subframe of femtocell that used ABS 82
Figure 4.3. LTE/LTE-A Architecture(Conventional) 83
Figure 4.4. LTE/LTE-A Architecture for EFN(Proposed) 84
Figure 4.5. System structure by interface(Scheme 1) 85
Figure 4.6. System structure by receiver of fBS(Scheme 2) 85
Figure 4.7. System structure by signal analysis of fUE(Scheme 3) 86
Figure 4.8. Effective SINR CDF of PCFICH by system structures 87
Figure 4.9. Effective SINR CDF of PDCCH by system structures 88
Figure 4.10. Effective SINR CDF of PHICH by system structures 89
Figure 4.11. Example of interference b/w macrocell and picocell 90
Figure 4.12. Example of interference avoidance methods using ABS and SS 92
Figure 4.13. The additional interference problem by symbol shifting 93
Figure 4.14. Additional Schemes using ABS and SS to avoid Interference 94
Figure 4.15. Effective SINR CDF of PCFICH by ABS and SS 95
Figure 4.16. Effective SINR CDF of PDCCH by ABS and SS 96
Figure 4.17. Effective SINR CDF of PHICH by ABS and SS 97
Figure 5.1. Simulation environment of sub-chapter 5.3 100
Figure 5.2. Simulation environment of sub-chapter 5.4 101
Figure 5.3. Example of interference on subframe b/w macrocell and femtocell 106
Figure 5.4. Example of ABS allocation by ARC 107
Figure 5.5. The flow chart of Femtocell Resource Control(FRC) algorithm 110
Figure 5.6. Example of resource allocation by AFRC scheme 111
Figure 5.7. The SINR CDF of mBS subframe 112
Figure 5.8. The SINR CDF of fBS subframe 113
Figure 5.9. The throughput of mBS subframe 115
Figure 5.10. The throughput of fBS subframe 115
Figure 5.11. The outage probability of mBS subframe 117
Figure 5.12. The outage probability of fBS subframe 118
Figure 5.13. UEs's Information reception of EFNS through interface 120
Figure 5.14. The flow chart of Adaptive ABS Resource Control(A-ARC) algorithm 123
Figure 5.15. Example of ABS allocation by A-ARC algorithm of A-AFRC scheme 124
Figure 5.16. Example of resource allocation by FRC algorithm of A-AFRC scheme 125
Figure 5.17. The variation of number of ABSs 126
Figure 5.18. The SINR CDF of mBS subframe 128
Figure 5.19. The SINR CDF of fBS subframe 128
Figure 5.20. The throughput of mBS subframe 130
Figure 5.21. The throughput of fBS subframe 130
Figure 5.22. The outage probability of mBS subframe 132
Figure 5.23. The outage probability of fBS subframe 133