표제지
목차
요약문 8
제1장 서론 26
1.1. 총괄전략 29
1.2. 기후변화 모델 및 시나리오 31
1.2.1. 기후시나리오 생산 31
1.2.2. 지역오차보정 및 상세화 36
1.2.3. 다중 모델 평균기법 44
1.2.4. 시계열 배수 매칭법(Multiplicative Time Series Matching, MTSM) 51
1.2.5. 극치 수문사상 분석 및 전망 53
1.3. 수문환경 모델 및 자료 58
1.3.1. 장기유역유출모형 58
1.3.2. 저수지 수질모형 73
1.3.3. 하도 수질모형 76
1.4. 조회ㆍ표출시스템 구축 82
1.4.1. 현업활용을 위한 편의성을 극대화하기 위하여 방대한 전망결과의 IT시스템화 82
1.4.2. 원시 및 상세보정된 기후전망과 수문환경전망에 대한 GIS 위치정보기반의 조회ㆍ표출 시스템 프레임 구축 85
1.5. 관련자료 취득전략 87
1.5.1. 기후변화 GCM 원시자료 87
1.5.2. 유역모델링 및 관측자료 87
1.5.3. 저수지 수리ㆍ수질모델 구축 및 검증자료 87
1.5.4. 하천 수리ㆍ수질모델 구축 및 검증자료 88
제2장 대상유역 89
2.1. 상주보 상류유역 89
제3장 IPCC RCP 배출시나리오별 모델 앙상블 전망자료 수집 및 분석 90
3.1. 기상청 표준시나리오 및 전세계 주요기후전망 모형의 시나리오별 전망 모의자료 수집 91
3.1.1. 기상청 표준시나리오 및 전세계주요 기후전망 모형 91
3.1.2. 기후변화 시나리오 98
3.2. 모델별 기후전망값의 검보정 102
3.2.1. 정상성 분위사상법을 이용한 지역오차보정 102
3.2.2. 베이지안 모델 가중치 115
3.2.3. 베이지안 앙상블 강우 검증 118
3.2.4. 월별 편차보정을 통한 온도 보정 129
3.3. 미래 시나리오를 적용한 기후전망 131
3.3.1. 비정상성 분위사상법을 이용한 수문전망 131
3.3.2. 미래 전망기간에 대한 온도 모의 147
3.3.3. 미래 전망기간에 대한 증발산 추세분석 151
제4장 불확실성 전망을 위한 통계적 기반의 오차보정 및 상세화 기법 수립 155
4.1. 일단위 및 시단위 상세화모형 구축 및 검증 155
4.1.1. 시계열 배수매칭법을 이용한 일단위 수문전망 155
4.1.2. 극치분석을 위한 시간적 상세화 기법 165
4.1.3. 일단위 이하 강우에 대한 IDF 곡선 170
4.2. 모델별 불확실도 평가 181
제5장 유역수출 - 수질(저수지, 하도) 모델체인 구축 및 시범적용을 통한 수문환경 영향전망 184
5.1. 유역유출모형과 저수지/하도 수질모형 구축 및 검증 184
5.1.1. 유역유출모형 184
5.1.2. 저수지 수질모형 194
5.1.3. 하도 수질모형 214
5.2. 기후 및 토지이용변화에 따른 댐유역 유출 및 오염부하 변화분석과 저수지/하류하천 수질영향 분석 및 전망 217
5.2.1. 기후 및 토지이용변화에 따른 변화에 대한 선행연구 조사 217
5.2.2. 기후변화에 의한 유역유출량 전망 220
제6장 수문환경 임팩트 D/B화 및 조회ㆍ표출 시스템 구축 229
6.1. 현업활용을 위한 편의성을 극대화하기 위하여 방대한 전망결과의 IT시스템화 229
6.1.1. 데이터 분석 229
6.1.2. 데이터베이스 설계 234
6.1.3 조회ㆍ표출 목록 242
6.2. 원시 및 상세보정된 기후전망과 수문환경전망에 대한 GIS 위치정보기반의 조회ㆍ표출 시스템 프레임 구축 244
6.2.1. 시스템 개요 244
6.2.2. 조회ㆍ표출 시스템 프레임 구축 245
제7장 결론 254
참고문헌 257
[부록 1] RCP 기반 기후변화시나리오 분석 및 미래기후 전망 검토 262
제1장 서론 265
제2장 대표농도경로(RCP) 배출 시나리오 267
2.1. 배출 시나리오란? 267
2.2. SRES 배출 시나리오 267
2.3. RCP 배출시나리오 269
제3장 기후변화 예측모델의 평가 273
3.1. 기후변화 예측모델의 종류 273
3.2. 기후변화 예측모델 평가를 위한 실험 설계 275
3.3. CMIP5 기후변화 예측 모델의 기후 재현 성능 평가 277
제4장 IPCC 5차 평가보고서(AR5)의 전지구 기후변화 전망 284
4.1. 기온과 강수의 변화 284
4.2. 대기 순환의 변화 286
4.3. 물 순환의 변화 288
제5장 동아시아 및 우리나라의 지역기후변화 전망 292
5.1. 기후변화와 몬순 시스템 292
5.2. 동아시아 지역기후변화 전망 294
5.3. 우리나라의 기후변화 전망 299
제6장 결론 및 차기 기후변화 평가보고서를 위한 전략 304
참고 문헌 308
[부록 2] 기후변화 시나리오 수자원분야 적용 및 관리방안 제안 313
제1장 서론 316
제2장 기후변화에 따른 수자원분야 국내외 연구동향 322
2.1. 국외 연구동향 조사 322
2.2. 국내 연구동향 조사 324
제3장 수자원분야 기후변화 시나리오 적용 현황 334
3.1. 국외 적용 현황 334
3.2. 국내 적용 현황 343
제4장 기후변화에 따른 지속가능한 수자원 계획 및 관리방안 제안 348
4.1. 지속가능한 발전을 위한 수자원 계획의 제안 348
4.2. 기후변화에 따른 관리방안의 제안 351
제5장 수자원분야 기후변화 시나리오 적용에 따른 활용성 및 기대효과 356
5.1. 기후변화 시나리오 적용에 따른 수자원분야 적용범위 및 활용 356
5.2. 기후변화에 따른 수문환경변화 전망에 활용 356
제6장 결론 358
참고문헌 360
판권기 367
Table 1.1. Overview of RCP Scenarios 32
Table 1.2. List of CMIP5 models and related institutions(PCMDI web page) 34
Table 1.3. Difference of PP and MOS 37
Table 1.4. A summary of the pros and cons of the main statistical downscaling methods(Wilby et al., 1994) 39
Table 1.5. Relative pros and cons of MTSM of climate scenario generation(Diaz-Nieto and Wilby, 2005) 51
Table 1.6. Comparison of watershed model 58
Table 1.7. Classification of soil in the SCS runoff cruve medhod (Yoon, 1998) 62
Table 1.8. Water quality parameter in CE-QUAL-W2 73
Table 2.1. List of selected rain gauge stations and Thiessen weight 89
Table 3.1. HadGEM3-RA models and related institutions 92
Table 3.2. List of CMIP5 models and related institutions(PCMDI web page) 92
Table 3.3. Selected 20 GCMs for Bayesian Model Averaging(PCMDI web page) 94
Table 3.4. Overview of RCP Scenarios 100
Table 3.5. Statistical parameters of observation during 2006~2013 102
Table 3.6. Statistical parameters of HadGEM3-RA during 2006~2013 103
Table 3.7. Statistical parameters of observation during 1981~2000 103
Table 3.8. Statistical parameters of 20 GCMs during 1981~2000 103
Table 3.9. Summary of seasonal precipitation results before and after the SQM of HadGEM3-RA in Sangju-bo upstream basin during 2006~2013 113
Table 3.10. Summary of seasonal precipitation results before and after the SQM of simple averaging 20 GCMs in Sangju-bo upstream basin during 1981~2000 113
Table 3.11. Summary of uncertainty range for seasonal precipitation results of simple averaging of original 20 GCMs in Sangju-bo upstream basin during 1981~2000 114
Table 3.12. Summary of uncertainty range for seasonal precipitation results of simple averaging of bias corrected 20 GCMs in Sangju-bo upstream basin during 1981~2000 114
Table 3.13. Bayesian model weights of each rain gauge station during 1981~2000 116
Table 3.14. Annual precipitation of observed precipitation during 1981~2000 120
Table 3.15. Annual precipitation of BMA precipitation during 1981~2000 121
Table 3.16. Monthly precipitation of observed precipitation during 1981~2000 122
Table 3.17. Monthly precipitation of BMA precipitation during 1981~2000 123
Table 3.18. Summary of observed seasonal precipitation of each rain gauge station during 1981~2000 126
Table 3.19. Summary of BMA seasonal precipitation of each rain gauge station during 1981~2000 126
Table 3.20. Statistical parameter of each rain gauge station under RCP 4.5 scenario(HadGEM3-RA) 131
Table 3.21. Statistical parameter of each rain gauge station under RCP 4.5 scenario(BMA) 132
Table 3.22. Summary of each period averaging annual precipitation of each rain gauge station under RCP 4.5 scenario(HadGEM3-RA) 136
Table 3.23. Summary of each period averaging annual precipitation of each rain gauge station under RCP 4.5 scenario(BMA) 136
Table 3.24. Summary of seasonal precipitation by period in Sangju-bo upstream basin under RCP 4.5 scenario(HadGEM3-RA) 145
Table 3.25. Summary of seasonal precipitation by period in Sangju-bo upstream basin under RCP 4.5 scenario(BMA) 145
Table 3.26. Summary of monthly temperature by period in Sangju-bo upstream basin under BMA RCP 4.5 scenario(Sangju-bo upstream) 150
Table 3.27. Summary of seasonal evapotranspiration by period under RCP 4.5 scenario(CanESM2) 151
Table 3.28. Summary of seasonal evapotranspiration by period under RCP 4.5 scenario(GFDL-ESM2G) 152
Table 4.1. Annual maximum daily precipitation of Obs precipitation during 1981~2000 156
Table 4.2. Annual maximum daily precipitation of KMA(HadGEM3-RA) precipitation during 2021~2040 157
Table 4.3. Annual maximum daily precipitation of KMA(HadGEM3-RA) precipitation during 2041~2060 158
Table 4.4. Annual maximum daily precipitation of KMA(HadGEM3-RA) precipitation during 2061~2080 159
Table 4.5. Annual maximum daily precipitation of KMA(HadGEM3-RA) precipitation during 2081~2100 160
Table 4.6. Annual maximum daily precipitation of BMA precipitation during 2021~2040 161
Table 4.7. Annual maximum daily precipitation of BMA precipitation during 2041~2060 162
Table 4.8. Annual maximum daily precipitation of BMA precipitation during 2061~2080 163
Table 4.9. Annual maximum daily precipitation of BMA precipitation during 2081~2100 164
Table 4.10. Correction factor of each rain gauge station 166
Table 4.11. Summary of non-central moment(1~5 order) of each rain gauge station 173
Table 4.12. Comparison of probabilistic precipitation results basin during 1981~2000 176
Table 4.13. Probability precipitation of general flood frequency analysis result during 1981~2000 177
Table 4.14. Probability precipitation of GEV scaling using observed data result basin during 1981~2000 177
Table 4.15. Probability precipitation of GEV scaling using downscaled data result during 1981~2000 178
Table 4.16. Model evaluation results in Sangju-bo upstream basin 183
Table 5.1. Locational Data construction period 187
Table 5.2. Comparison of discharge in Dosan 188
Table 5.3. Comparison of discharge in Andong Dam 189
Table 5.4. Comparison of discharge in Youngyang 191
Table 5.5. Comparison of discharge in Imha Dam 192
Table 5.6. Comparison of discharge in Jukjeon 193
Table 5.7. Comparison of the predicted temperature prediction model 198
Table 5.8. Comparison of prediction performance of water temperature prediction model 204
Table 5.9. Error assessment of reservoir water surface simulation result in Andong Dam 207
Table 5.10. Error assessment of water temperature simulation result in Andong Dam 209
Table 5.11. Error assessment of reservoir water surface simulation result in imha Dam 211
Table 5.12. Error assessment of water temperature simulation result in Imha Dam 212
Table 5.13. Analysis of Seasonal Change and Monthly Change in Naeseongchun Watershed 222
Table 5.14. Flow Regime Change in Naeseongchun 223
Table 5.15. Analysis of Seasonal Change and Monthly Change in Naeseongchun Watershed 225
Table 5.16. Analysis of Seasonal Change and Monthly Change in Naeseongchun Watershed 227
Table 5.17. Analysis of Seasonal Change and Monthly Change in Naeseongchun Watershed 228
Table 6.1. Data types 229
Table 6.2. GIS Data 233
Table 6.3. Database Tables 234
Table 6.4. Observation information table details 235
Table 6.5. Prospect information table details 236
Table 6.6. Prospect information table - Model results Details 237
Table 6.7. Prospect Information table - Water quality monitoring network Details 237
Table 6.8. Water Resources Information table - Dam details 238
Table 6.9. Water Resources Information table - Bo details 239
Table 6.10. Water Resources Information table - Water level station details 240
Table 6.11. Water Resources Information table - Rainfall station details 240
Table 6.12. Water Resources Information table - Weather station Details 241
Table 6.13. Water Resources Information table - Water quality monitoring network Details 241
Table 6.14. Observation information graph list 242
Table 6.15. Prospect information graph list 243
Table 6.16. System Configuration screen graph(temperature) 249
Table 6.17. List of System function 250
Figure 1.1. Schematic diagram of this study 30
Figure 1.2. Previous IPCC assessments(SAR IS92a, AR4 SRES A1B, A2 and B1) are compared with RCP scenarios 32
Figure 1.3. Classification of statistical downscaling 38
Figure 1.4. Schematic diagram for Stationary Quantile Mapping 41
Figure 1.5. Statistical distribution obtained from stationary and nonstationary quantile mapping 42
Figure 1.6. Process for implementing Nonstationary Quantile Mapping 42
Figure 1.7. Uncertainty range of between 20 GCMs 45
Figure 1.8. Schematic diagram of Bayesian Model Averaging 48
Figure 1.9. Schematic diagram of EM algorithm 50
Figure 1.10. Conceptual diagram of MTSM method 52
Figure 1.11. Flowchart of flood frequency analysis 54
Figure 1.12. Schematic of SWAT model 59
Figure 1.13. Hydrologic cycle 60
Figure 1.14. HRU / Subbasin flow chart 65
Figure 1.15. Partitioning of nitrogen in SWAT 69
Figure 1.16. Partitioning of phosphorous in SWAT 70
Figure 1.17. Hydrologic response units(HRU) concept 71
Figure 1.18. Weather station 72
Figure 1.19. DEM 72
Figure 1.20. Soil 72
Figure 1.21. Land use 72
Figure 1.22. Response relationship between water quality factors of the QUALMEV(left) and QUAL2E(right) 81
Figure 1.23. Plan of database 82
Figure 1.24. Input procedures of the target data 83
Figure 1.25. Loading procedures of the database 84
Figure 1.26. Development Methodology 85
Figure 1.27. Perform procedures of project 86
Figure 2.1. Sangju-bo upstream basin area and rain gauge distribution 89
Figure 3.1. 20 GCMs grids in South Korea 97
Figure 3.2. A sample of GCM precipitation field throughout world(1.1≒122km) 98
Figure 3.3. Previous IPCC assessments(SAR IS92a, AR4 SRES A1B, A2 and B1) are compared with RCP scenarios 100
Figure 3.4. Probability distribution of HadGEM3-RA during 2006-2013(left : PDF, right : CDF) 104
Figure 3.5. Probability distribution of HadGEM3-RA during 2006-2013(left : PDF, right : CDF) 106
Figure 3.6. Probability distribution of 20 GCMs during 1981~2000(left : PDF, right : CDF) 108
Figure 3.7. Probability distribution after SQM of each gauge station during 1981~2000(left : PDF, right : CDF) 110
Figure 3.8. Comparison of seasonal precipitation results before and after the SQM of HadGEM3-RA in Sangju-bo upstream basin during 2006~2013 112
Figure 3.9. Comparison of seasonal precipitation results before and after the SQM of simple averaging 20 GCMs in Sangju-bo upstream basin during 1981~2000 112
Figure 3.10. Box-Whisker plot of seasonal precipitation before and after SQM in Sangju-bo upstream basin during 1981~2000 114
Figure 3.11. Histogram of Bayesian model weights of each rain gauge station during 1981~2000 117
Figure 3.12. Annual precipitation and uncertainty range with 95% confidence interval of each rain gauge station during 1981~2000 119
Figure 3.13. Frequency of occurrences for monthly precipitation of each rain gauge station during 1981~2000 124
Figure 3.14. Scatter plot of Bayesian ensemble percentile precipitation for the observation of each rain gauge station during 1981~2000 125
Figure 3.15. Histogram of seasonal precipitation of each rain gauge station during 1981~2000 127
Figure 3.16. Box-Whisker plot of Bayesian ensemble seasonal precipitation and uncertainty range of each rain gauge station 128
Figure 3.17. Comparison of temperature result befor and after bias correction in Sangju-bo upstream basin during 1981~2000(left : before, right : after) 129
Figure 3.18. Probability distribution after NSQM for RCP 4.5 of each gauge station during 2021~2100, HadGEM3-RA(left : PDF, right : CDF) 132
Figure 3.19. Probability distribution after NSQM for RCP 4.5 of each gauge station during 2021~2100, BMA Ensemble(left : PDF, right : CDF) 134
Figure 3.20. KMA RCM(HadGEM3-RA) RCP 4.5 scenario against baseline enhancement ratio map of annual precipitation(2021~2100) 137
Figure 3.21. BMA RCP 4.5 scenario against baseline enhancement ratio map of annual precipitation(2021~2100) 138
Figure 3.22. Annual precipitation and uncertainty range from 95% confidence interval of each rain gauge station under RCP 4.5 scenario 139
Figure 3.23. Histogram of seasonal precipitation of each rain gauge station under RCP 4.5 scenario(HadGEM3-RA) 141
Figure 3.24. Histogram of seasonal precipitation of each rain gauge station under RCP 4.5 scenario(BMA) 142
Figure 3.25. Time series graph under RCP 4.5 scenario(HadGEM3-RA) 143
Figure 3.26. Time series graph under RCP 4.5 scenario(BMA) 144
Figure 3.27. Box-Whisker plot of RCP 4.5 precipitation and uncertainty range by projection periods in Sangju-bo upstream basin(BMA) 146
Figure 3.28. Projected annual mean air temperature in Sangju-bo upstream basin during 2021~2100 147
Figure 3.29. Time series graph under RCP 4.5 scenario(CanESM2) 152
Figure 3.30. Time series graph under RCP 4.5 scenario(GFDL-ESM2G) 153
Figure 4.1. GEV distribution during 1981~2000(left: 1-day BMA precipitation, right: 24hr duration BMA precipitation) 165
Figure 4.2. GEV distribution of 24hr BMA precipitation of each rain gauge station during 1981~2000 167
Figure 4.3. Non-central moment(1~5 order) of each rain gauge station 171
Figure 4.4. Scatter plot Scale exponent for the moment of each rain gauge station 173
Figure 4.5. IDF curve from general flood frequency analysis result 179
Figure 4.6. IDF curve from GEV scaling using observed data 179
Figure 4.7. IDF curve from GEV scaling using downscaled data 180
Figure 5.1. Hydrology response urits(HRU) concept 184
Figure 5.2. Weather station 185
Figure 5.3. DEM 185
Figure 5.4. Soil 185
Figure 5.5. Land use 185
Figure 5.6. Calibration(a) and validation(b) of flow in Dosan 188
Figure 5.7. Calibration(a) and validation(b) of flow in Andong Dam 189
Figure 5.8. Calibration(a) and validation(b) of flow in Youngyang 190
Figure 5.9. Calibration(a) and Validation(b) of Flow in Imha Dam 191
Figure 5.10. Calibration of flow in Jukjeon 192
Figure 5.11. Validation of flow in Jukjeon 193
Figure 5.12. Cross-section grid construction of horizontal and vertical in Andong Dam 195
Figure 5.13. Water level-Storage capacity relationship in Andong reservoir 196
Figure 5.14. Water quality station in Andong Dam 196
Figure 5.15. Andong Dam operation data in calibration and validation period 197
Figure 5.16. Weather condition in Andong Dam watershed 199
Figure 5.17. Cross-section grid construction of horizontal and vertical in Imha Dam 200
Figure 5.18. Water level-Storage capacity relationship in Imha reservoir 201
Figure 5.19. Water quality station in Imha Dam 202
Figure 5.20. Imha Dam operation data in calibration and validation period 203
Figure 5.21. Weather condition in Imha Dam watershed 205
Figure 5.22. Comparison of observation and simulation in Andong Dam(reservoir water surface) 206
Figure 5.23. Comparison of observation and simulation water temperature in Andong Dam 1 208
Figure 5.24. Comparison of time series concentration change of TN, TP, Chl-a in Andong Dam 1(2011, 2010) 210
Figure 5.25. Comparison of observation and simulation in Imha Dam(reservoir water surface) 211
Figure 5.26. Comparison of observation and simulation water temperature in Imha Dam intake station 212
Figure 5.27. Comparison of time series concentration change of TN, TP, Chl-a in Imha Dam 1(2006, 2011) 213
Figure 5.28. Schematic of upper Sangju weir watershed 214
Figure 5.29. Monthly analysis of water quality in upper Sanju weir 215
Figure 5.30. Annual analysis of water quality in upper Sanju weir 215
Figure 5.31. Calibration(BOD) 216
Figure 5.32. Validation(T-P) 216
Figure 5.33. Combinated Impact of Climate and Land Use Change 219
Figure 5.34. Trend Analysis of Naeseongchun 220
Figure 5.35. Monthly Analysis of Streamflow in Naeseongchun 220
Figure 5.36. Streamflow Change Rate of Naeseongchun 221
Figure 5.37. Flow Change in Naeseongchun 222
Figure 5.38. Precipitation vs. Total Streamflow in Naeseongchun 223
Figure 5.39. Monthly Analysis of SS in Naeseongchun 224
Figure 5.40. SS Change Rate of Naeseongchun 224
Figure 5.41. Monthly Analysis of T-N in Naeseongchun 226
Figure 5.42. T-N Change Rage of Naeseongchun 226
Figure 5.43. Monthly Analysis of T-P in Naeseongchun 227
Figure 5.44. T-N Change Rate of Naeseongchun 228
Figure 6.1. Observation Data - Dam basin 229
Figure 6.2. Observation Data - River basin 230
Figure 6.3. Observation Data - Bo upstream basin 230
Figure 6.4. Prospect Data - Dam basin 230
Figure 6.5. Prospect Data - River basin 230
Figure 6.6. Prospect Data - Bo upstream basin 230
Figure 6.7. Prospect Data - model results 231
Figure 6.8. Prospect Data - Water quality monitoring network 231
Figure 6.9. Water Resources Data - Multipurpose Dam 231
Figure 6.10. Water Resources Data - Water dam 232
Figure 6.11. Water Resources Data - Multi-function Bo 232
Figure 6.12. Water Resources Data - Water level stations 232
Figure 6.13. Water Resources Data - Rainfall stations 232
Figure 6.14. Water Resources Data - Water quality monitoring network 232
Figure 6.15. GIS Data 233
Figure 6.16. Main screen 244
Figure 6.17. System Configuration 245
Figure 6.18. System Configuration screen - Main 246
Figure 6.19. System Configuration screen - Observation Information Status lookup by period 247
Figure 6.20. System Configuration screen - The chart zoom 248
[부록 1] RCP 기반 기후변화시나리오 분석 및 미래기후 전망 검토 271
Table 2.1. Types of representative concentration pathways. Adapted from Moss et al., 2008 and 국립기상연구소, 2010 271
Table 4.1. CMIP5 annual mean surface air temperature anomalies (oC) from the 1986-2005 reference period for selected time periods, regions, and RCPs. The multi-model mean ± 1 standard deviation ranges across the individual models... 285
Table 5.1. Temperature and precipitation changes for RCP4.5 in CMIP5 global models averaged over Eastern Asia. Periods in Year indicate averages over 2016-2035, 2046-2065, and 2081-2100 with respect to 1986-2005. For each variable... 295
Table 5.2. Temperature and precipitation changes in the future (2076-2100) with respect to the period of 1981-2005 averaged over the region of Korean Peninsula.Adapted from National Institute of Meteorological Research(2012) 302
[부록 2] 기후변화 시나리오 수자원분야 적용 및 관리방안 제안 328
표 1. (2014, 교육부 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2014년인 경우에 국한 328
표 2. (2014, 국무조정실 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2014년인 경우에 국한 328
표 3. (2014, 국민안전처 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2014년인 경우에 국한 329
표 4. (2014, 국토교통부 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2014년인 경우에 국한 329
표 5. (2014, 기상청 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2014년인 경우에 국한 330
표 6. (2014, 농림축산식품부 및 농촌진흥청 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2014년인 경우에 국한 331
표 7. (2014, 미래창조과학부 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2014년인 경우에 국한 331
표 8. (2014, 환경부 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2014년인 경우에 국한 332
표 9. (2013, 교육부 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2013년인 경우에 국한 332
표 10. (2013, 국무조정실 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2013년인 경우에 국한 332
표 11. (2013, 국토교통부 소관) 기후변화 관련 과제 중 수자원의 키워드를 가지고 있는 과제. 최종년도가 2013년인 경우에 국한 333
표 12. 기후변화에 따른 홍수 관련 외국 논문리스트 335
표 13. 기후변화에 따른 가뭄 관련 외국 논문리스트 339
표 14. 기후변화에 따른 홍수 관련 국내 논문리스트 345
표 15. 기후변화에 따른 가뭄 관련 국내 논문리스트 346
[부록 1] RCP 기반 기후변화시나리오 분석 및 미래기후 전망 검토 269
Fig. 2.1. Schematic illustration of SRES scenario. Four qualitative storylines yield four sets of scenarios called "families": A1, A2, B1, and B2. Altogether 40 SRES scenarios have been developed by six modeling teams. All are... 269
Fig. 2.2. Approaches to the development of global scenarios: (a) previous sequential approach; (b) proposed parallel approach. Numbers indicate analytical steps(2a and 2b proceed concurrently). Arrows indicate transfers of information... 270
Fig. 3.1. Main features of the Atmosphere-Ocean General Circulation Models(AOGCMs) and Earth System Models(ESMs) participating in Coupled Model Intercomparison Project 5(CMIP5), and a comparison with CMIP3 in AR4... 274
Fig. 3.2. Main features of the ESMICs assessed in the AR5, including components and complexity of the models. Model complexity for four components is indicated by colour shading.(Adapted from Flato et al., 2013) 275
Fig. 3.3. Left: Schematic summary of CMIP5 short-term experiment with tier 1 experiments(yellow background) organized around a central core(pink background). Right: Schematic summary of CMIP5 long-term experiments with... 276
Fig. 3.4. Annual mean surface air temperature for the period 1980-2005. (a) Multi-model (ensemble) mean constructed with one realization of all available model used in the CMIP5 historical experiment. (b) Multi-model mean bias as... 280
Fig. 3.5. Annual-mean precipitation rate (mm/day) for the period 1980-2005. (a) Multi-model mean constructed with one realization of all available AOGCMs used in the CMIP5 historical experiment. (b) Difference between multi-model... 281
Fig. 3.6. Relative error measures of CMIP5 model performance, based on the global seasonal-cycle climatology (1980-2005) computed from the historical experiments. Rows and columns represent individual variables and models... 282
Fig. 4.1. Time series of global annual mean surface air temperature anomalies (relative to 1986-2005) from CMIP5 concentration-driven experiments. Projections are shown for each RCP for the multi-model (solid... 284
Fig. 4.2. CMIP5 multi-model ensemble average of DJF (top row) and JJA (bottom row) mean sea level pressure change (2081-2100 minus 1986-2005) for, from left to right, RCP2.6, 4.5, and 8.5. Hatching indicates regions where the multi-model... 287
Fig. 4.3. CMIP5 multi-model ensemble average of zonal and annual mean wind change (2081-2100 minus 1986-2005) for from left to right, RCP2.6, 4.5, and 8.5. Black contour represent the multi-model average for 1986-2005 base period... 288
Fig. 4.4. Projected changes in near-surface relative humidity from the CMIP5 models under RCP8.5 for the DJF (left), JJA (middle), and annual mean (right) averages relative to 1986-2005 for the periods, 2046-2065 (top-row), 2081-2100... 290
Fig. 4.5. Changes in annual mean soil moisture relatevbe to the reference period 1986-2005 projectd for 2081-2100 from the CMIP5 ensemble. Hatching indicates regions where the multi-model mean change is less than one standard deviation... 291
Fig. 5.1. Schematic diagram illustrates the main ways that human activity influences monsoon rainfall.(Adapted from Christensen et al., 2013) 292
Fig. 5.2. Maps of precipitation changes for Central, North, East and South Asia in 2080-2099 with respect to 1986-2005 in JJAS (above) and DJFM (below) in the SRES A1B scenario with 24 CMIP3 models (left), in the RCP4.5 scenario with 39... 294
Fig. 5.3. Time series of temperature change relative to 1986-2005 averaged over land grids over eastern Asia in DJF(top left) and the same over Tibetan Plateau(top right). Individual lines indicate one ensemble member per model, thick lines... 296
Fig. 5.4. Same as in the Fig. 5.3 except for the June-July-August (JJA).(Adapted from IPCC, 2013) 297
Fig. 5.5. The same as in Fig. 5.3 except for the precipitation. Hatching denotes areas where the 20-year mean differences of the percentiles are less than the standard deviation of model-estimated present-day natural... 298
Fig. 5.6. The same as in Fig. 5.5 except for the JJA season.(Adapted from IPCC, 2013) 298
Fig. 5.7. Time series of temperature (a) and precipitation anomalies (b) with respect to the period of 1971-2000 averaged over the region of Korea peninsula from the 16 CMIP5 models. Shading areas indicate the one standard deviation... 299
Fig. 5.8. (Top) Annual mean temperature from ERA-interim reanalysis for 1979-2005 (a), differences between HadGEM2-AO and ERA-interim reanalysis (b), and differences between HadGEM3-RA and ERA-interim reanalysis. (Bottom) The... 301
Fig. 5.9. (Top) Present-day (1981-2005) precipitation amount simulated by HadGEM3-RA (a) and differences between future (2076-2100) and present for RCP2.6 (b), RCP4.5 (c), RCP6.0 (d), and RCP8.5 (e). (Bottom) THe same as in the... 303
Fig. 6.1. Schematic of the proposed experiment design for the phase 6 of the CMIP6. The inner ring and surrounding grey ring invove standardized functions of all CMIP, including... 305
Fig. 6.2. Domains for the CORDEX-South Asia (Orange), CORDEX-East Asia Phase Ⅰ(Pink dashed), Phase Ⅱ(Red), CORDEX-Southeast Asia (Sky blue), and CORDEX-Australia (Green) 306
[부록 2] 기후변화 시나리오 수자원분야 적용 및 관리방안 제안 317
그림 1. 기후재해, 기상재해, 수재해, 지구물리재해, 생물재해로 나누어 본 전세계적인 재해 증가를 보여주는 그림(출처는 본문에 기재) 317
그림 2. 구글 트렌드 빅데이터 시계열 분석(영어) 318
그림 3. 구글 트렌드 빅데이터 시계열 분석(한글) 319
그림 4. 구글 트렌드 빅데이터 시계열 분석(영어) 320
그림 5. 구글 트렌드 빅데이터 시계열 분석(한글) 320
그림 6. 지구상의 물 순환을 정량적으로 도해한 그림(Trenberth et al., 2007) 322
그림 7/그림 8. 해외 수자원관련 키워드별 연구 현황 323
그림 8. 국내 수자원관련 키워드별 연구 현황 324
그림 9. 미래기후 변화 시나리오(RCP 4.5)에 따른 CMIP5 20개 모델을 통한 한반도(33˚N-43˚N, 124˚E-131˚E)의 (a) 겨울철과 (b) 여름철 강수 단기(2006~2049) 및 장기(2050~2099) 미래 변화(문혜진 등, 2014) 325
그림 10. 미래기후 변화 시나리오(RCP 4.5) 에 따른 CMIP5 20개 모델을 통한 한반도(33˚N-43˚N, 124˚E-131˚E)의 (a,b) 겨울철과 (c,d) 여름철 수분수렴과 역학적, 열역학적, 에디 항들의 단기(2025-2049) 및 장기... 327
그림 11. 빅데이터 분석을 통한 분야별 기후변화 영향 개념도 334
그림 12. 기후변화에 의한 2100년 부근의 전 지구적 수문변수의 변화량(Wang, 2012) 335
그림 13. AR5 모형 예측 자료를 이용한 글로벌 몬순 지역별 21세기 강수와 순환장 강도 변화(Wang et al., 2014) 349