본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

목차

Ⅰ. 서론 7

Ⅱ. 이론 12

2.1 충격파 점화에 의한 폭굉의 개시 12

2.2 충격파와 폭굉파의 역학 13

가.입사 충격파 18

나.반사 충격파 23

2.3 파라메타 계산 25

Ⅲ. 실험 27

3.1 실험장치 및 측정 27

3.2 시료제조 28

3.2.1 충격파 Ⅰ의 시료제조 28

3.2.2 충격파 Ⅱ의 시료제조 31

Ⅳ. 결과 및 고찰 34

4.1 Acetylene의 폭굉역학 34

4.1.1 폭굉의 점화지연 34

4.1.2 C2H2-O2-N2혼합물 37

4.2 Acetylene의 폭굉한계 40

4.3 Acetylene의 폭굉반응 속도론 65

Ⅴ. 결론 67

참고문헌 68

Abstract 71

Table 1. Experimental conditions for C₂H₂-O₂-Ar mixtures behind reflected shock (P₁=100 torr) 32

Table 2. Experimental conditions for C₂H₂-O₂-N₂ mixtures behind reflected shock (P₁=100 torr) 32

Table 3. Experimental conditions for C₂H₂-O₂-N₂ mixtures behind initial shock (P₁=50 kPa) 33

Table 4. Observed parameters in C₂H₂-O₂-Ar mixtures behind reflected shocks 41

Table 5. Observed parameters in C₂H₂-O₂-N₂ mixtures behind reflected shocks 48

Table 6. Comparison of delay kinetics of acetylene with some compounds of interest 47

Table 7. The observed Pcj and u of C₂H₂ in an artificial air initial shock (P₁=50 kPa). When the von Neuman spike does not appear, P₂ is subtracted from the observed value. The speed is taken as average from values observed between the two regions 54

Table 8. The calculated CJ detonation properties of C₂H₂-O₂-N₂ mixture(P₁=50 kPa) 57

Table 9. Reaction Mechanism and Rate Coefficient Expression(Ea : cal/mol) 66

Fig.1. One-dimension flow for gas 14

Fig.2. Rankine-Hugoniot curve illustrating 16

Fig.3. 19

(a) An x, t diagram showing progress of the shock wave. Possible wave systems produced by the collision of a reflected shock wave and a contact surface, rarefaction wave 19

(b) Pressure and temperature distribution profile at a time t 19

Fig.4. 21

(a) The gas parameters in the regions associated with shock wave 21

(b) The partice flow velocities before and the reflection of a shock wave 21

Fig.5. 29

(a) Schematic diagram of shock tube Ⅰ 29

(b) Schematic diagram of shock tube Ⅱ 30

Fig.6. Typical oscillogram of pressure and OH emission profile (A²Σ+ → X²Ⅱ, 306.4 ㎚) in C₂H₂-O₂-Ar mixture behind reflected shocks (sweep speed : 0.2 ㎳/div.) : A;triggered point, B;an arrival of a reflected shock and C;onset of detonation 36

Fig.7. Plot of ln τ versue 1/T5 for the mixtures(C₂H₂ : O₂ : Ar)A(■), D(◆) and I(●) 38

Fig.8. Plot of ln τ versue 1/T5 for the mixtures(C₂H₂ : O₂ : Ar) B(■), C(◆) and F(●) 38

Fig.9. Plot of ln τ versue 1/T5 for the mixtures(C₂H₂ : O₂ : Ar) E(▲), G(■), H(◆) and J(●) 39

Fig.10. Plot of y versue 1/T5 for all the mixtures(C₂H₂ : O₂ : Ar) : y=ln{τ/(5.97[C₂H₂]-0.5 [O₂]0.00 [Ar]1.33)} 39

Fig.11. Plot of ln τ versue 1/T5 for the mixtures(C₂H₂ : O₂ : N₂)A(◆) and D(●) 52

Fig.12. Plot of ln τ versue 1/T5 for the mixtures(C₂H₂ : O₂ : N₂) B(▲), C(□) and F(●) 52

Fig.13. Plot of ln τ versue 1/T5 for the mixtures(C₂H₂ : O₂ : N₂) E(■), and G(●) 53

Fig.14. Plot of y versue 1/T5 for all the mixtures(C₂H₂ : O₂ : N₂) : y=ln{τ/(5.97[C₂H₂]-0.5 [O₂]0.00 [N₂]1.33)} 53

Fig.15. Typical oscillograms of pressure profile in C₂H₂-O₂-Ar mixture behind initial shocks(P=50 kPa. P=500-600 psi, sweep speed : 0.2 ㎳/div) : left;C₂H₂ : O₂ : N₂=1 : 8 : 29 and right;1.5 : 8 : 29 62

Fig.16. Product distribution of equilibrium compositions at the CJ detonation of C₂H₂-O₂-N₂ mixture as a function of mole% of actylene (P₁ is fixed at 50 kPa). The mole ratio of oxygen to nitrogen is fixed at 22/78 63

Fig.17. Plot of PCJ vs. mole % of acetylene in the artificial air (P₁=50 kPa) : PCJ measured at station Ⅱ-2(■), station Ⅱ-3(□) and station Ⅱ-3(◆), u evaluated from pressure profiles observed stations Ⅱ-3 and Ⅱ-4. The solid lines represent calculated values 64