본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

국문요약

Abstract

목차

1. 서론 10

2. 이론적 배경 13

2.1. 열전변환의 물리적 현상 13

2.1.1. Seebeck 효과(열전발전의 원리) 13

2.1.2. Peltier 효과(열전냉각의 원리) 14

2.1.3. Thomson 효과 15

2.1.4. Joule 열 15

2.2. 열전특성의 최적화 16

2.2.1. 성능지수(Figure of Merit)의 최적화 16

2.2.2. 캐리어농도의 최적화 17

2.2.3. 열전도도의 최소화 20

2.3. Bi₂Te₃계 열전반도체의 특징 23

2.3.1. Bi₂Te₃계 화합물의 결정구조 23

2.3.2. Bi₂Te₃계 열전반도체의 결함구조 및 소성변형의 영향 23

3. 실험방법 36

3.1. 열전반도체의 제조 36

3.2. 열전특성의 측정 37

3.2.1. 열전능의 측정 37

3.2.2. 전기비저항의 측정 38

3.2.3. 열전도도의 측정 38

3.2.4. 홀계수의 측정 39

4. 연구결과 및 고찰 48

4.1. 수소환원에 따른 산소농도 변화 48

4.2. 수소환원에 따른 소결체의 열전특성 49

4.3. 수소환원 시 동반되는 어닐링 효과에 대한 고찰 53

5. 결론 72

References 74

감사의 글 76

그림목차

Fig. 2-1(a)(b). Basic concept of Seebeck effect 27

Fig. 2-2. The basic concept of thermoelectric generation and the energy band diagram 28

Fig. 2-3. Schematic diagram of ∏-type thermoelectric generation module 29

Fig. 2-4. The basic concept of thermoelectric cooling and the energy band diagram 30

Fig. 2-5. Schematic diagram of ∏-type thermoelectric cooling module 31

Fig. 2-6. Schematic diagram of Thomson effect 32

Fig. 2-7. The relationship between thermoelectric properties and carrier concentration 33

Fig. 2-8. Crystal structure of Bi₂Te₃ compound 34

Fig. 2-9. Schematic energy diagram for point defects in Bi₂Te₃ 35

Fig. 3-1. Schematic fabrication diagram of thermoelectric semiconductor by SPS 40

Fig. 3-2. SPS system configuration 41

Fig. 3-3. Pulsed current flow through powder particles 42

Fig. 3-4. Heating cycle of sintering process 43

Fig. 3-5. Schematic diagram of measurement of Seebeck coefficient 44

Fig. 3-6. Schematic diagram of DC 4 probe method 45

Fig. 3-7. Schematic diagram of static comparative method 46

Fig. 3-8. Schematic diagram of measurement of Hall coefficient 47

Fig. 4-1. Effects of reduction time and temperature on oxygen content of n-type powders 56

Fig. 4-2. Effects of reduction time and temperature on oxygen content of p-type powders 57

Fig. 4-3. Effects of oxygen content on Seebeck coefficient of the n-and p-type compounds sintered by using the powders reduced in H₂atmosphere 58

Fig. 4-4. Effects of oxygen content on electrical resistivity of the n- and p-type compounds sintered by using the powders reduced in H₂atmosphere 59

Fig. 4-5. Effects of oxygen content on thermal conductivity of the n-type compounds sintered by using the powders reduced in H₂atmosphere 60

Fig. 4-6. Effects of oxygen content on thermal conductivity of the p-type compounds sintered by using the powders reduced in H₂atmosphere 61

Fig. 4-7. Effects of oxygen content on figure of merit of the n- and p-type compounds sintered by using the powders reduced in H₂atmosphere 62

Fig. 4-8. Effects of annealing and reduction on oxygen content of n-type powders 63

Fig. 4-9. Effects of annealing and reduction on oxygen content of p-type powders 64

Fig. 4-10. Effects of annealing and reduction on Seebeck coefficient of the n- and p-type sintered compounds 65

Fig. 4-11. Effects of annealing and reduction on electrical resistivity of the n- and p-type sintered compounds 66

Fig. 4-12. Effects of annealing and reduction on thermal conductivity of the n-type sintered compounds 67

Fig. 4-13. Effects of annealing and reduction on thermal conductivity of the p-type sintered compounds 68

Fig. 4-14. Effects of annealing and reduction on Figure of merit of the n- and p-type sintered compounds 69

Fig. 4-15. Effects of annealing and reduction on carrier concentration of the n- and p-type sintered compounds 70

Fig. 4-16. Effects of annealing and reduction on carrier mobility of the n- and p-type sintered compounds 71