본문바로가기

자료 카테고리

전체 1
도서자료 0
학위논문 1
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (0)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (1)
학위논문 (1)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
논문명/저자명
무부자 쌍끌이 중층트롤 어구 어법의 개발 / 유제범 인기도
발행사항
부산 : 부경대학교 대학원, 2007.2
청구기호
TD 639.2 ㅇ434ㅁ
형태사항
xvi, 127 p. ; 26 cm
자료실
전자자료
제어번호
KDMT1200718000
주기사항
학위논문(박사) -- 부경대학교 대학원, 수산물리학, 2007.2
원문
미리보기

목차보기더보기

표제지

목차

Abstract 14

제1장 서론 20

1.1. 연구배경과 목적 20

1.2. 연구사례 25

1.3. 연구의 개요 27

제2장 현용 쌍끌이 중층망의 전개성능 29

2.1. 재료 및 방법 30

2.1.1. 모형어구 30

2.1.2. 실험수조 및 장치 36

2.1.3. 실험방법 38

2.2. 결과 및 고찰 41

2.2.1. 유체저항 41

2.2.2. 망고 및 망폭 44

2.2.3. 망구면적 및 여과량 45

2.2.4. 뜸의 부력에 따른 전개성능 47

가. 유체저항 47

나. 망고 및 망폭 49

2.3. 요약 52

제3장 無浮子 쌍끌이 중층망의 전개성능 54

3.1. 재료 및 방법 56

3.1.1. 모형어구 및 실험장치 56

3.1.2. 실험방법 58

3.1.3. 아래끌줄 길이에 따른 망고전개의 원리 60

3.2. 결과 및 고찰 61

3.2.1. 아래끌줄의 길이(dL)에 따른 전개성능 61

3.2.2. Front weight의 무게에 따른 전개성능 74

3.2.3. Wing-end weight의 무게에 따른 전개성능 81

3.3. 요약 89

제4장 카이트를 부착한 無浮子 쌍끌이 중층망의 전개성능 93

4.1. 재료 및 방법 95

4.1.1. 모형어구 95

4.1.2. 카이트의 제작 97

4.1.3. 실험수조 및 장치 100

4.1.4. 실험방법 101

4.2. 결과 및 고찰 103

4.2.1. 카이트의 면적에 따른 전개성능 103

4.2.2. Wing-end weight의 무게에 따른 전개성능 111

4.2.3. Front weight의 무게에 따른 전개성능 117

4.2.4. 아래끌줄의 길이(dL)에 따른 전개성능 125

4.3. 요약 131

제5장 종합고찰 133

참고문헌 140

감사의 글 145

Table 2-1. Value of k and n as a function of hydrodynamic resistance according to the buoyance in case of Fig.2-10 48

Table 3-1. Value of k and n as a function of hydrodynamic resistance according to dL in case of Fig. 3-3 62

Table 3-2. Value of xand y of the experimental formula (3-1) in case of Fig.3-5 67

Table 3-3. Value of k and n as a function of hydrodynamic resistance according to the front weight in case of Fig. 3-12 75

Table 3-4. Value of k and n asa function of hydrodynamic resistance according to the wing-end weight in case of Fig. 3-17 82

Table 4-1. Value of k and n asa function of hydrodynamic resistance according to the kite area in case of Fig. 4-6 107

Fig. 2-1. Drawing of the full-scale midwater pair trawl(MAT. : materal, PA : polyamide, PE : polyethylene). 32

Fig. 2-2. Schematic arrangement of head rope(a), ground rope (b) and net pendant (c) of the full scale midwater pair trawl. 33

Fig. 2-3. Drawing of the model midwater pair trawl. 34

Fig. 2-4. Schematic arrangement of head rope(a), ground rope(b) and net pendant(c) of the model midwater pair trawl(F. W : front weight) 35

Fig. 2-5. Schematic drawing of the circulation water channel. 37

Fig. 2-6. Schematic drawing of the experimental equipments(a, b : observation point of net height and width) 37

Fig. 2-7. Relationship between hydrodynamic resistance and flow speed in the commercial midwater pair trawl. 43

Fig. 2-8. Change of the net height and width according to the flow speed in the commercial midwater pair trawl. 45

Fig. 2-9. Change of the mouth area and filtering volume according to the flow speed in the commercial midwater pairt rawl. 46

Fig. 2-10. Relationship between hydrodynamic resistance and flow speed according to the buoyance in the commercial midwater pair trawl. 49

Fig. 2-11. Change of net height and width according to the buoyance in the commercial midwater pair trawl. 51

Fig. 3-1. Schematic arrangement of head rope(a), ground rope(b) and net pendant(c) of the model midwater pair trawl(F. W : front weight, W. W : wing-end weight) 57

Fig. 3-2. Schematic diagram for opening effect of height in the non-float pair trawl. 61

Fig. 3-3. Relationship between hydrodynamic resistance and flow speed according to dL in the non-float midwater pair trawl 64

Fig. 3-4. Relationship between hydrodynamic resistance acting on the lower warp and flow speed according to dL in the non-float midwater pairt rawl. 64

Fig. 3-5. Relationship between net heightand flow speed according to the lower warp length in the non-float midwater pair trawl. 68

Fig. 3-6. Relationship between net height and dL according to the flow speed in the non-float midwater pair trawl. 69

Fig. 3-7. Relationship between netwidth and flow speed according to dL in the non-float midwater pairt rawl. 69

Fig. 3-8. Relationship between netwidth and dL according to the flow speed in the non-float midwater pair trawl. 70

Fig. 3-9. Relationship between netwidth and dL according to the flow speed in the non-float pair trawl at the observation point a . 71

Fig. 3-10. Relationship between mouth area and dL according to the flow speed in the non-float midwater pairt rawl. 73

Fig. 3-11. Relationship between filtering volume and dL according to the flow speed in the non-float midwater pair trawl 73

Fig. 3-12. Relationship between hydrodynamic resistance and flow speed according to the front weight in the non-float midwater pair trawl when dL is 30m. 75

Fig. 3-13. Relationship between net heightand flow speed according to the front weight in the non-float midwater pair trawl with dL of 30m. 77

Fig. 3-14. Relationship between netwidth and flow speed according to the front weight in the non-float pair trawl with dL of 30m. 78

Fig. 3-15. Relationship between mouth area and flow speedinthe non-float pair trawl according to the front weight when dL is 30m. 80

Fig. 3-16. Relationship between filtering volume and flow speedinthe non-float pair trawl according to the front weight when dL is 30m. 80

Fig. 3-17. Relationship between hydrodynamic resistance and flow speed according to thewing-end weight in the non-float midwater pair trawl when dL is 30m and the front weight is 1.40tons. 82

Fig. 3-18. Relationship between net heightand flow speed according to the wing-end weight in the non-float midwater pair trawl when dL is 30m and the front weight is 1.40tons. 84

Fig. 3-19. Relationship between netwidth and flow speed according to the wing-end weightin the non-float midwater pair trawl when dL is 30m and the front weight is 1.40tons. 85

Fig. 3-20. Relationship between mouth area and flow speed according to the wing-end weight in the non-float midwater pair trawl when dL is 30m and the front weight is 1.40tons. 87

Fig. 3-21. Relationship between filtering volume and flow speed according to the wing-end weight in the non-float midwater pair trawl when dL is 30m and the front weight is 1.40tons. 88

Fig. 4-1. Developed drawing of the model non-float midwater pair trawl(b~g : observation points in the netside shape). 95

Fig. 4-2. Schematic arrangement of head rope(a), groundrope(b) and net pendant(c) of the model non-float midwater pair trawl(F. W : front weight, W. W : wing-end weight). 96

Fig. 4-3. Structureof the kite(a) and its suspension in the head rope(b)(①~② : attached order of the kite in the model experiment, a : head rope, b : connection line, c : netting, d : kite, e : float). 99

Fig. 4-4. Schematic drawing of the experimental equipments(a~g : observation point in the net side shape). 100

Fig. 4-5. Working depth of the model midwater pair trawl(- : partof warpand pendent, ── : netpart, ―ㆍ― : setting depth of sward) 105

Fig. 4-6. Hydrodynamic resistance(a), netheight(b) and width(c) according to the kite area in the non-float midwater pair trawl with the kite when the front weight is 1.40tons, the wing-end weight is 1.11tons and dL is 30m. 109

Fig. 4-7. Working depth of the non-float midwater pair trawl with the 4kites according to the wing-end weight when the front weight is 1.40tons and dL is 30m 112

Fig. 4-8. Hydrodynamic resistance(a), net height(b) and net width(c) according to the wing-end weightin the non-float midwater pair trawl with the 4kites when the front weight is 1.40tons and dL is 30m. 115

Fig. 4-9. Working depth of the non-float midwaterpair trawl withthe 4kites according to the front weight when the wing-end weight is 0ton and dL is 30m 118

Fig. 4-10. Total hydrodynamic resistance of net(a) and tension acting on the lower warp(b) according to the front weight in the non-float midwater pair trawl with the 4kites when the wing-end weight is 0ton and dL is 30m. 122

Fig. 4-11. Net height(a) and width(b) according to the front weight in the non-float midwater pair trawl with the 4kites when the wing-end weight is 0ton and dL is 30m. 124

Fig. 4-12. Working depth of the non-float midwater pair trawl with the 4kites according to dL when the front weight is 1.40tons and the wing-end weight is 0ton at 4.0knots 126

Fig. 4-13. Opening efficiency according to dL in the non-float midwater pair trawl with the 4kite swhen the front weight is 1.40tons and the wing-end weight is 0ton at 4.0knots. 127

Fig. 4-14. Relationship between filtering volume and flow speed. 129

Fig. 4-15. Relationship between hydrodynamic resistance permouth area and flow speed in the non-float midwater pair trawl with the 4kites when dL is 30m and the wing-end weight is 0ton. 130

Photo. 1-1. Net drum in the commercial midwater pair trawler. 23

Photo. 1-2. Process of hauling in the commercial midwater pair trawler 24

Photo. 2-1. Side view (a) and upper view (b) of vertical circulation water channel. 36

Photo. 2-2. Observation of net height and width in the model net. 39

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기