권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
표제지
목차
PART 1. Photoresponsive Azobenzene-cored Arylether Dendrimers 16
Abstract 17
I. 서론 19
1. 덴드리머 (dendrimer) 19
2. 아조벤젠 (azobenzene) 24
II. 실험 28
1. 시약 및 기기 28
2. 합성 29
III. 결과 및 고찰 65
1. Mono-azo-Gn(3,4,5) (n=1-3) 1-3흡수스펙트럼. 65
2. Bis-azo-Gn(3,5) 4-6과 Bis-azo-Gn(3,4,5) 7-9 (n=1-3)의 흡수스펙트럼 80
3. Bis-azo-Gn(3,5)과 Bis-azo-Gn(3,5)-OH (n=1-3) 3a-3c의 흡수스펙트럼 비교 95
IV. 결론 110
V. 참고문헌 112
PART 2. Synthesis of 5-(4'-methyl [1,1'-biphenyl]-2-yl)-1H-tetrazole (MBPT) as a key intermediate for the preparation of Angiotensin II.Receptor Antagonists 116
Abstract 117
I. 서론 118
II. 실험 121
1. 시약 및 기기 121
2. 합성 122
III. 결과 및 고찰 132
1) 용매 DMF하에서 다양한 Lewis acid와 salt를 사용한 MBPT 합성 132
2) 다양한 base solvent하에서 Lewis acid와 salt를 이용한 MBPT 합성 134
3) 유기용매와 물의 혼합 용매 하에서의 MBPT 합성 136
IV. 결론 138
V. 참고문헌 140
Part 1 12
Figure 1. Representation of a dendrimer 19
Figure 2. Frechet's hexasubstituted benzene core dendrimer 20
Figure 3. Representative divergent approach and convergent approach 21
Figure 4. Dendrimers [A: Newkome's Micellanoate, B: PAMAM (Amine... 22
Figure 5. Principle of the dendritic box 23
Figure 6. UV absorption spectrum of photoresponsive azobenzene dendrimer 25
Figure 7. Absorption spectra of Mono-azo-Gn(3,4,5) (n=1-3) 1-3 in... 67
Figure 8. Absorption spectral changes of Mono-azo-G1 (3,4,5) 1 in methanol... 69
Figure 9. Absorption spectral changes of Mono-azo-G2(3,4,5) 2 in methanol... 70
Figure 10. Absorption spectral changes of Mono-azo-G3 (3,4,5) 3 in methanol... 71
Figure 11. Absorption spectral changes of Mono-azo-G1(3,4,5) 1 in methanol,... 73
Figure 12. Absorption spectral changes of Mono-azo-G2(3,4,5) 2 in methanol,... 74
Figure 13. Absorption spectral changes of Mono-azo-G3(3,4,5) 3 in methanol,... 75
Figure 14. Absorption spectral changes of Mono-azo-G1(3,4,5) 1 in... 77
Figure 15. Absorption spectral changes of Mono-azo-G2(3,4,5) 2 in... 78
Figure 16. Absorption spectral changes of Mono-azo-G3(3,4,5) 3 in... 79
Figure 17. Absorption spectral changes of Bis-azo-G1(3,5) 4 in dichloromethane... 82
Figure 18. Absorption spectral changes of Bis-azo-G2(3,5) 5 in dichloromethane... 83
Figure 19. Absorption spectral changes of Bis-azo-G3(3,5) 6 in dichloromethane... 84
Figure 20. Absorption spectral changes of Bis-azo-G1 (3,4,5) 7 in... 85
Figure 21. Absorption spectral changes of Bis-azo-G2(3,4,5) 8 in... 86
Figure 22. Absorption spectral changes of Bis-azo-G3(3,4,5) 9 in... 87
Figure 23. Absorption spectral changes of Bis-azo-G1(3,5) 4 in dichloromethane... 89
Figure 24. Absorption spectral changes of Bis-azo-G2(3,5) 5 in dichloromethane... 90
Figure 25. Absorption spectral changes of Bis-azo-G3(3,5) 6 in dichloromethane... 91
Figure 26. Absorption spectral changes of Bis-azo-G1 (3,4,5) 7 in... 92
Figure 27. Absorption spectral changes of Bis-azo-G2(3,4,5) 8 in... 93
Figure 28. Absorption spectral changes of Bis-azo-G3(3,4,5) 9 in... 94
Figure 29. Absorption spectral changes of Bis-azo-G1(3,5) 4 in acetone with... 97
Figure 30. Absorption spectral changes of Bis-azo-G2(3,5) 5 in acetone with... 98
Figure 31. Absorption spectral changes of Bis-azo-G3(3,5) 6 in acetone with... 99
Figure 32. Absorption spectral changes of Bis-azo-G1(3,5)-OH 10 in acetone... 100
Figure 33. Absorption spectral changes of Bis-azo-G2(3,5)-OH 11 in acetone... 101
Figure 34. Absorption spectral changes of Bis-azo-G3(3,5)-OH 12 in acetone... 102
Figure 35. Absorption spectral changes of Bis-azo-G1(3,5) 4 in acetone with... 104
Figure 36. Absorption spectral changes of Bis-azo-G2(3,5) 5 in acetone with... 105
Figure 37. Absorption spectral changes of Bis-azo-G3(3,5) 6 in acetone with... 106
Figure 38. Absorption spectral changes of Bis-azo-G1(3,5)-OH 10 in acetone... 107
Figure 39. Absorption spectral changes of Bis-azo-G2(3,5)-OH 11 in acetone... 108
Figure 40. Absorption spectral changes of Bis-azo-G3(3,5)-OH 12 in acetone... 109
Part 2 15
Figure 1. 주요 Angiotensin II 수용체 차단제의 종류 및 공통 중간체 119
Part 1 9
Scheme 1. Representation of the isomerization of azobenzene 24
Scheme 2. Photoresponsive azobenzene dendrimer 25
Scheme 3. Cis → trans isomerization mechanism of photoresponsive... 26
Scheme 4. Synthesis of dendrons Gn(3,4,5)-OH 30
Scheme 5. Synthesis of dendron G1(3,4,5)-CO₂CH₃ 31
Scheme 6. Synthesis of dendron G1(3,4,5)-OH 32
Scheme 7. Synthesis of dendron G2(3,4,5)-CO₂CH₃ 33
Scheme 8. Synthesis of dendron G2(3,4,5)-OH 34
Scheme 9. Synthesis of dendron G3(3,4,5)-CO₂CH₃ 35
Scheme 10. Synthesis of dendron G3(3,4,5)-OH 36
Scheme 11. Synthesis and isomerization reactions of Mono-azo-Gn(3,4,5) (n... 38
Scheme 12. Synthesis of Mono-azo-G1(3,4,5) 1 39
Scheme 13. Synthesis of Mono-azo-G2(3,4,5) 2 41
Scheme 14. Synthesis of Mono-azo-G3(3,4,5) 3 43
Scheme 15. Synthesis of Bis-azo-Gn(3,5) 4-6 and Bis-azo-Gn(3,4,5) 7-9 (n... 45
Scheme 16. Structures of Bis-azo-Gn(3,5) 4-6 and Bis-azo-Gn(3,4,5) 7-9 (n... 46
Scheme 17. Synthesis of 4,4'-dihydroxyazobenzene 47
Scheme 18. Synthesis of Bis-azo-G1(3,5) 4 48
Scheme 19. Synthesis of Bis-azo-G2(3,5) 5 50
Scheme 20. Synthesis of Bis-azo-G3(3,5) 6 52
Scheme 21. Synthesis of Bis-azo-G1(3,4,5) 7 54
Scheme 22. Synthesis of Bis-azo-G2(3,4,5) 8 56
Scheme 23. Synthesis of Bis-azo-G3(3,4,5) 9 58
Scheme 24. Synthesis of Bis-azo-Gn(3,5)-OH (n=1-3) 10-12 60
Scheme 25. Structures of Bis-azo-Gn(3,5)-OH (n=1-3) 10-12 61
Scheme 26. Synthesis of Bis-azo-G3(3,5)-OH 10 62
Scheme 27. Synthesis of Bis-azo-G2(3,5)-OH 11 63
Scheme 28. Synthesis of Bis-azo-G3(3,5)-OH 12 64
Scheme 29. Trans ⇔ cis isomerization reactions of Mono-azo-Gn(3,4,5)...(이미지참조) 65
Scheme 30. Trans ⇔ cis isomerization reactions of Bis-azo-Gn(3,5) 4-6...(이미지참조) 80
Scheme 31. Trans ⇔ cis isomerization reactions of Bis-azo-Gn(3,5) 4-6...(이미지참조) 95
Part 2 10
Scheme 1. Synthesis of 5-(4'-methyl [1,1'-biphenyl]-2-yl)-1H-tetrazole(MBPT) 119
Scheme 2. Synthesis of MBPT in DMF 132
Scheme 3. Synthesis of MBPT in base solvent 134
Scheme 4. Synthesis of MBPT in mixed solvent 136
PART 1. Photoresponsive Azovenzene-cored Arylether Dendrimers
Dendrimers are highly ordered, monodisperse, tree-like functional macromolecules, in which the position and number of functional component can be precisely controlled. As the generation become higher, the structure of dendrimers changes from flat th spherical and interior void space increase. Dendritic compounds with diverse functional moieties have been reported in recent years. Dendrimers with photoresponsive moiety at the core or the branch or the periphery may play an important role in nanotechnology including the preparation of functional nanomaterials such as nano-sized molecular electronic device, molecular photoswitch, sensor, and drug-delivery systems because light-driven simple geometrical change of core molecule of concurrent geometrical changes of many peripheral molecules may result in the large conformational change throughout the dendritic entity.
Azobenzene is well know photochromic molecule to show clean reversible isomerization. The more stable trans-azobenzene can be converted to the less stable cis-azobenzene by UV light irradiation. Cis-azobenzene can be converted back to trans-azobenzene by visible light irradiation or thermally in the dark. Intense investigation has been carried out for the dendrimer with a photoisomerizable azobenzene unit in the core or periphery.
For dendrimer with a photoisomer azobenzene unit in core arylether dendrimer in the periphery, it would be expected that simple trans-cis geometrical change of core molecule may result in the large conformational change throughput the dendritic entity and the introduction of various functional group could allow the easy modification of periphery.
PART 2. Synthesis of the 5-(4'-methyl[1,1'-biphenyl]-2-yl)-1H-tetrazole(MBPT) as key intermediate for the Angiotensin II Receptor Antagonists
There are several kinds of drugs for the treatment of high blood pressure such as diuretics, adrenergic inhibitors, vasodilators, calcium channel blockers.
Angiotensin Converting Enzyme (ACE) inhibitors and Angiotensin II Receptor Antagonists. Among these antihypertensives, Angiotensin II Receptor Antagonists are the most popular antihypertensives because these have no serious side effects and are more stable compounds than others. Angiotensin II Receptor Antagonist has a common biphenyl structure which is connected to amines or immidazoles. Biphenyl derivatives are used as key intermediates for antihypertensives and other organic compounds such as anti-inflammatories, organic EL(Electro Luminescence) and so on. We report here the synthesis of the Aryl tetrazole from Aryl nitrile as key intermediates for the Angiotensin II Receptor Antagonists.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.