본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

목차

제1장 서론 9

1.1. 연구의 배경 및 필요성 9

1.2. 연구의 목적 12

제2장 이론 및 문헌적 배경 14

2.1. 태양전지(Solar Cells) 14

2.1.1. 태양전지의 개요 14

2.1.2. 태양전지의 역사 14

2.1.3. 태양전지의 종류 16

2.1.4. 태양전지의 변환효율 및 향후 연구 방향 19

2.2. 염료감응형 태양전지(Dye-Sensitized Solar Cells) 20

2.2.1. 염료감응형 태양전지의 역사와 배경 20

2.2.2. 염료감응형 태양전지의 구조 및 작동원리 22

2.2.3. 염료감응형 태양전지의 구동 메카니즘 25

2.3. 염료감응형 태양전지의 구성요소 29

2.3.1. 투명전극 (TCO : Transparent Conducting Oxide) 29

2.3.2. 전이금속 산화물 TiO₂ 30

2.3.3. 염료(Dye) 36

2.3.4. 전해질(Electrolyte) 38

2.3.5. 상대전극(Counter electrode) 39

2.3.6. Sealing 및 Soldering 39

2.3.7. 염료감응형 태양전지의 특성평가 40

제3장 실험방법 43

3.1. TiO₂ 나노입자 제조 43

3.2. TiO₂ 나노와이어 제조 45

3.3. 염료감응형 태양전지(DSSC) 제작 47

3.3.1. TiO₂ 복합 페이스트 제조 47

3.3.2. 광전극 및 염료 제조 49

3.3.3. 상대전극 및 전해질 제조 50

3.3.4. 염료감응형 태양전지 Cell 제작 50

3.4. 분석 및 특성 평가 52

제4장 결과 및 고찰 54

4.1. TiO₂ 나노입자의 특성분석 54

4.2. TiO₂ 나노와이어의 특성분석 58

4.3. 염료감응형 태양전지의 효율 측정 66

제5장 결론 73

참고 문헌 74

Abstract 79

표목차

Table 1. Classification of solar cells 16

Table 2. The present conversion efficiencies on various solar cells and... 19

Table 3. Properties of TiO₂ crystal strustures. 35

Table 4. Conditions of X-ray diffraction analysis. 52

Table 5. Surface area, pore size of the TiO₂ nanoparticle. 57

Table 6. Surface area, pore size of the TiO₂ nanowires 65

Table 7. Photovoltaic data for DSSC 69

Table 8. Photovoltaic data for DSSC 72

그림목차

Fig.1. Structure of a inorganic solar cell 17

Fig.2. Structure of a organic solar cell 18

Fig.3. Structure of a dye-sensitized solar cells 22

Fig.4. Principle of operation of a dye-sensitized solar cell 23

Fig.5. Schematic diagram of energy level at the interface... 25

Fig.6. Schematic diagram of energy level and electron transfer... 26

Fig.7. Band gap energy of various oxides. 32

Fig.8. The molecular structures of ruthenium complex photosensitizer. 37

Fig.9. Current - Voltage curve of solar cells 42

Fig.10. Preparation schemes of TiO₂ nanoparticle by hydrothermal. 44

Fig.11. Preparation schemes of TiO₂ nanowire by hydrothermal 46

Fig.12. Manufacturing process of TiO₂ pastes. 48

Fig.13. Schematic diagram of dye-sensitized solar cell assembly. 51

Fig.14. TG-DTA curves of the TiO₂ nano-particle 55

Fig.15. XRD pattern of TiO₂ nano-particles calcined at 300℃~800℃ for 2h 55

Fig.16. FE-SEM and TEM images of the TiO₂ nano-particle 56

Fig.17. EDS analysis of the titanate nanowires. 59

Fig.18. XRD pattern of the titanate nanowires. 59

Fig.19. TG-DTA curves of the titanate nanowires 60

Fig.20. FE-SEM and TEM images of the titanate nanowires 60

Fig.21. XRD pattern of TiO₂ nanowires calcined at 300℃~800℃ for 2h 61

Fig.22. FE-SEM images of TiO₂ nanowires calcined at 300℃~800℃ for 2h 63

Fig.23. FE-SEM and TEM images of the TiO₂ nanowire... 64

Fig.24. FE-SEM images of TiO₂ NP/TiO₂(B) NW... 68

Fig.25. Photocurrent-voltage curves of the cells 69

Fig.26. FE-SEM images of TiO₂ NP/TiO₂(A) NW composite electrode... 71

Fig.27. Photocurrent-voltage curves of the cells 72

초록보기

 One-dimensional TiO₂ and titanate nanomaterials have attracted much attention because of their potential applications for electronic and energy-related devices, such as humidity sensors, optoelectronic devices, lithium ion battery, hydrogen storage and dye-sensitized solar cells. One-dimensional nanomaterials in dye-sensitized solar cells are expected to improve electron transfer and light scattering, which both result in enhancing light to electricity conversion efficiency. TiO₂ nanoparticle/nanowire composite electrode is promising for high-performance dye-sensitized solar cells, because it offers possible electron transfer paths without losing high surface area. TiO₂ nanoparticle and nanowires were prepared using the hydrothermal method, for dye-sensitized solar cells in order to improve light to electricity conversion efficiency. The TiO₂ nanoparticle/TiO₂ anatase nanowires composite cells showed higher DSC performance than ordinary nanoparticle cells and fully nanowire cells: efficiency 4.5 % for dye-sensitized solar cells with 10wt% nanowire, whereas 2.5 % for 0 wt% nanowire, and 1.2 % for 100wt% nanowire.