본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

ABSTRACT

Contents

Chapter 1. Introduction 12

Chapter 2. Review of coherent control 15

2.1. Femtosecond pulse shaping 17

2.1.1. Spatial light modulator 17

2.1.2. Acousto-optic pulse shaper 18

2.2. Adaptive coherent control 21

2.3. Analytic coherent control 22

2.3.1. Resonant two-photon transition 22

2.3.2. Coherent transients 25

Chapter 3. 2D Fourier transform optical spectroscopy 31

3.1. Electric field notation 31

3.2. Inter-excited state transitions in a V-type system 34

3.3. Three pulse coherent control scheme 36

Chapter 4. 2D Fourier transform coherent control spectroscopy (2D-FTCCS) 42

4.1. Experimental description 42

4.2. Controlled preparation of quantum systems 45

4.3. Coherent control of inter-excited state transition 45

4.3.1. Control of transition order 47

4.3.2. Quantum interference engineering 52

Chapter 5. Coherent transients in a V-type three-level system 56

5.1. Transitions in a ladder system 57

5.2. Coherent transients in a two-level system 58

5.3. Coherent transients mimicked in atomic rubidium 60

Chapter 6. Shaped pulse 2D-FTOS in Quantum wells 66

6.1. Non-uniform continuum density of states on Fano resonance 66

6.2. Semiconductor quantum well V-type systems 72

Chapter 7. Conclusion 77

References 78

Summary 84

이력서 86

List of Tables

Table 3.1: Probability amplitude coefficients of |b〉 are sorted in accordance with the phase dependence on inter-pulse delays. |b〉 in Eq. (3.37) can be retrieved from this table: for example, the coefficient of fourth line, αag(1) βba(2), times phase dependence on т₁,e(Δωbg-Δωag)т₁, times phase dependence on т₂, unity,...(이미지참조) 38

List of Figures

Figure 2.1: Quantum coherent control influencing the evolution of a wavefunction. The system‘s initial wavefunction ψi evolves to a coherent superposition of the all possible final states ψf(n) under the influence of the control-free Hamiltonian Ho....(이미지참조) 16

Figure 2.2: Schematic of femtosecond pulse shaping in frequency domain with spatial light modulator. Gratings and lenses are arranged in a 4f configuration. The pulse shaping procedure is described in the text. 18

Figure 2.3: (a) AOPDF top view. The output beam is diffracted by 1 degree from the input beam, in the 90-degree-rotated linear polarization. (b) Schematic of AOPDF. Mode 1 in fast ordinary axis and mode 2 in slow extraordinary axis, are coupled by acousto-optic interaction when the phase matching... 20

Figure 2.4: Synthesis of the pulse shaping function parameters of the acoustic wave. Acoustic wave parameters are categorized into amplitude shaping and phase shaping parts. The frequency domain acoustic wave is Fourier transformed to the time domain signal and applied to the acousto-optic medium... 21

Figure 2.5: Experimental setup of adaptive coherent control. A SLM or femtosecond pulse shaper is used to shape the pulse with a help of feedback signal and closed-loop learning algorithm. The learning algorithm iteratively finds optimum pulses for different types of experiments. 23

Figure 2.6: (a) Drawing of the MLCT chromophore [Ru(dpb)₃]2+. (b) Normalized absorption (dashed line) and emission spectra (solid line) collected for the molecule dissolved in methanol at 298 K. (c) The schematic of the control methodology where multiphoton absorption of a shaped 800 nm laser pulse...(이미지참조) 24

Figure 2.7: Experimental results of adaptive control on [Ru(dpb)₃](PF6)₂. Solid circles are for maximization and open circles are for minimization of the ratio excitation/SHG.(이미지참조) 24

Figure 2.8: Energy level diagram of a resonant TPA in Rb. The frequencies of the 5S-5P (ωig) and 5P- 5D (ωfi) resonant transitions correspond to 780.2 nm and 776.0 nm, respectively. The pulse spectrum is centered on the two-photon transition frequency (ωfg/2) at 778.1 nm, with a bandwidth of Δω=...(이미지참조) 26

Figure 2.9: Experimental and calculated results performed on resonant two-photon transition in Rb atom. (a) Schematic expression of tested scheme. spectral components of the pulse was blocked symmetrically around ωfg /2 by an adjustable slit....(이미지참조) 27

Figure 2.10: Excitation scheme of rubidium. т is the pump-probe delay. 29

Figure 2.11: (a) Calculation results of excited transient population with unshaped (in amplitude) chirped pump pulse (black line) and with hole-shaped (in amplitude) in time domain chirped pulse (solid gray line) as the inset. The amount of chirp is same for both pulses.... 30

Figure 3.1: (a) Energy diagram of a V-type three-level system with one ground state |g〉 and two excited states |a〉 and |b〉. The transition energies of |a〉 and |b〉 from |g〉 are hωa and hωb respectively. The transition between |a〉 and |b〉 via |g〉 is presented by a red line and transition between |b〉 and |g〉 by...(이미지참조) 32

Figure 3.2: Peaks of 2D Fourier transform plane of |〈b|ψ〉|² state population coefficients (left part). Row and column are Fourier transform of т₁and т₂ respectively, and categorized with the coefficients of т₁and т₂.... 40

Figure 3.3: Peaks of 2D Fourier transform plane of |〈b|ψ〉|² state population coefficients (right part). Row and column are Fourier transform of т₁and т₂ respectively, and categorized with the coefficients of т₁and т₂.... 41

Figure 4.1: (a) Schematic representation of the experimental setup. (b) Pulse shaping scheme. The first pulse had a spectral hole around D₂ transition and the second pulse was pulse-shaped in various methods correspond to experimental purposes.... 44

Figure 4.2: (a) Experimental fluorescence data of 2D-FTOS measurement given as a function of two time delays, т₁and т₂. (b) 2D Fourier-transformed spectrum S(ω₁, ω₂) obtained from the time domain data (a).... 46

Figure 4.3: (a) Schematic diagram of the pulse shaping scenario. The first pulse has a spectral hole around D₂ transition and the second pulse is pulse-shaped to control the inter-excited state transition. The third pulse is unshaped.... 48

Figure 4.4: Numerical calculation results of 2D Fourier transform spectra, S(ω₁, ω₂), for the linearly chirped second pulses of the two different chirp coefficients: (a) -1 x 10³ fs², and (b) 1 x 10³ fs². The peak at (ωag - ω0, ωbg - ω0) denotes the the controlled transition |a〉 → |b〉.(이미지참조) 49

Figure 4.5: Experimental results of 2D FT spectra S(ω₁,ω₂) for shaped pulses with the five different chirp coefficients: (a) -1 x 10³ fs², (b) -5 x 10² fs², (c) zero, (d)5 x 10² fs², and (e) 1 x 10³ fs². The peaks at (ωag - ω0, ωbg - ω0) are marked by white arrows which represent the target two-photon process, 5P1/2 →...(이미지참조) 51

Figure 4.6: (a)-(c) Experimental results of 2D Fourier transformed spectra S(ω₁,ω₂) in contour map representation for linear chirp values of (a) -1000 fs², (b) zero, and (c) 1000 fs². The peaks (ωag - ω0, ωbg - ω0) are marked by black arrows....(이미지참조) 53

Figure 4.7: (a) Experimental and theoretical results for the quantum interference engineering. Dots: measured transition amplitude absolutes, dashed line: numerical calculation based on Eq. (4.6), solid line: numerical calculation considering the spectrally smeared phase (see the text).... 54

Figure 4.8: Coherent enhancement experiment of the 5P1/2 → 5P3/2 transition of Rb by spectral amplitude shaping. The measured transition probability amplitudes, normalized to the full spectrum limit (dots), are plotted along with the calculated data (dark line) as a function of the cutoff wavelength....(이미지참조) 55

Figure 5.1: Calculated transition probability amplitude from |a〉 to |b〉 via an intermediate state |g〉 using the Eq. (5.23): (a) is the resonant part (the first term), and (b) the nonresonant part (the second term). 62

Figure 5.2: (a) Numerical calculation of |cba(2)| plotted as a function of linear and quadratic chirps. (b) Extracted amplitudes of (ωag - ω0, ωbg - ω0) peaks of 2D Fourier transformed spectra (experimented for the white rectangular area in (a); interpolated twice from 13 x 7 measurements....(이미지참조) 63

Figure 5.3: (a) Extracted transition probabilities from the experimental 2D-spectra at (ωag-ω0, ωbg-ω0) peaks (circles) together with the numerical calculations of 5P1/2-5P3/2 transition (lines) as a function of linear chirp for quadratic chirp of the second pulse, (a) -5x10⁴fs³, (b) -3x10⁴fs³, (c) -1x10⁴fs³, (d)...(이미지참조) 65

Figure 6.1: Schematic exciton energy diagram of a localized state and a Wannier-Stark mini-band in a quantum-well superlattice under an external electric Stark field. As the field varies, the mini-band becomes lifted in energy, then, the localized state couples to lower-energy states of the band.... 67

Figure 6.2: Excitonic spectra of a 97/17 Å superlattice for different bias Stark fields, measured in reflection. 69

Figure 6.3: (a) The conventional Fano coupling parameter Г (asterisks) and the “bare" coupling parameter Гo (circles) which compensates the effects of the density of continuum states, depicted as a function of the Stark field for the hh-1 transition....(이미지참조) 71

Figure 6.4: Fano resonance of an exciton state with neighboring extended Wannier-Stark states. Between the resonant couplings with the next nearest neighboring WS state in (I) and with the nearest neighboring WS state in (III), the exciton state resonantly sweeps through the energy interval, having the minimal... 73

Figure 6.5: Bandgap energy and lattice constant of various III-V compounds at room temperature (adopted from Tien 1988). 74

Figure 6.6: (a) Band diagram of the double-quantum well structure and the energies of the bound states. Band diagrams are shown in black (valence band) and gray (conduction band) lines, and the excited states energies in pink (narrower well) and orange (wider well).... 75

Figure 6.7: Band diagram of the newly designed double-quantum well structure forming a V-type quantum system and the wavefunctions of one ground state and two excited states. 76

Figure 6.8: Band edges as a function of lattice constant of various III- V compounds at room temperature, relative to Fermi level of gold Schottky contact (after Tiwari and Frank, 1992). 76

초록보기

자연현상을 관찰하고 논리적으로 인식하는 것을 목적으로 하는 물리학에서, 양자상태함수를 준비하고 프로그램된 방향으로 전개, 그리고 측정을 통해 자연법칙을 이해하는 활동은 물리학을 연구하는 사람들의 근본적인 연구방법이다. 따라서 원자, 분자, 또는 반도체 등 다양한 양자계에서 만들어지는 양자상태를 이루는 전자를 재단된 광자로 조정하는 양자제어기술은 제안됨과 동시에 집중적 관심속에 활발한 연구가 이루어져 왔다. 또한, 양자계의 결맞음을 이용하여 양자함수를 이루는 상태함수들 사이의 연결법칙을 직접적으로 보여주는 이차원 푸리에 분광학은 양자계, 나아가 자연현상을 이해하고자 하는 물리학에서 전도유망한 혁신적인 도구로 관심을 모으고 있다.

이차원 푸리에 분광학의 기본 도구로 사용되는 펨토초 레이저는 시간상에서 매우 짧은 시간폭을 갖는 장점을 통해 피코초 시간 수준에서 이뤄지는 분자, 반도체, 그리고 생물질의 동역학을 관찰하는데 사용되고 있다. 하지만, 펨토초 레이저가 가지는 또다른 장점인 넓은 스펙트럼을 이용한 양자제어기술은 사용되지 않았다. 이 논문에서는 이차원 푸리에 분광학과 양자제어기술의 접목을 통해 얻게 되는 강력한 장점에 대해 서술하였다. 발전된 이차원 푸리에 분광학의 관점에서 보자면, 양자계를 이루는 여러 상태함수 중 특정 상태함수를 여기시키는 준비과정을 통해 복잡한 과정을 단순화하여 볼 수 있으며, 재단된 펨토초 레이저를 통해 상태함수간 연결세기를 조절할 수 있음을 알칼리 원자(루비듐)에 적용하여 실험적으로 보였다. 양자제어기술의 발전 관점에서 보면, 기존 방식으로는 측정의 어려움으로 인하여 연구가 진행되지 못하던 V-형 양자계에서 양자함수의 변화를 주도하는 1차 천이속에서 여기상태함수간의 2차 천이를 성공적으로 양자제어함과 동시에 측정할 수 있음을 보였다. 이 과정에서 천이의 절대값만이 아니라, 양자물리에서 매우 중요한 요소인 위상의 직접적인 측정도 가능함을 보였다. 더 나아가, V-형 양자계에서 여기상태함수간의 2차 천이는 재단된 펨토초 레이저의 위상이 미분된 형태로 정리되어 2레벨 양자계에서 보여지는 결맞는 과도 현상으로 해석됨을 보였다.

본 논문을 통해 단순화된 모델인 알칼리 원자에서 시연된 이차원 푸리에 변환 양자 제어 분광학을 이용하여, 반도체 V-형 양자계, 더 나아가 다단레벨구조 양자계에서의 양자제어를 통해 다중양자제어 등 양자전산으로의 응용을 기대하고 있다. 또한 복잡한 구조를 갖는 분자 또는 박테리아와 같은 생물질, 광합성 물질 등에서 복잡한 연결 과정을 단순화하고 조절하는 기술을 통해, 더 깊은 이해에 필요한 정보를 얻음으로써 분자동역학, 생물질의 연결구조, 그리고 효과적인 광합성 방식을 이해하고 얻을 수 있으리라 기대한다.