본문바로가기

자료 카테고리

전체 1
도서자료 0
학위논문 1
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (0)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (1)
학위논문 (1)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
논문명/저자명
The probabilistic assessment of saturated-unsaturated soil slope stability using numerical approach = 수치해석을 이용한 포화-불포화사면 안정의 확률론적 평가에 대한 연구 / Khalid Mahmood 인기도
발행사항
부산 : 부산대학교 대학원, 2012.2
청구기호
TD 624 -12-487
형태사항
xiii, 188 p. ; 26 cm
자료실
전자자료
제어번호
KDMT1201220827
주기사항
학위논문(박사) -- 부산대학교 대학원, Dept. of Civil & Environmental Engineering, 2012.2. 지도교수: Kim-Jin Man
원문

목차보기더보기

Title Page

Contents

List of Symbols and Abbreviations 12

Chapter 1. Introduction 16

1.1. Background 16

1.2. Research Methodology 19

1.3. Objectives 22

1.4. Scope of Study 22

1.5. Significance of Study 22

1.6. Limitations of Study 23

1.7. Organization 24

Chapter 2. Literature Review 26

2.1. General 26

2.2. Slope Stability in Term of Seepage Hazard 27

2.3. Slope Stability in Term of Rainfall Hazard 29

2.3.1. Rainfall Duration 32

2.3.2. Rainfall Pattern 33

2.4. Slope Stability in Term of Drawdown Condition 37

2.4.1. Importance of Reservoir Slope Stability Analysis 37

2.4.2. Controlling Factors for Reservoir Slope Stability 38

2.4.3. Saturated-Unsaturated Drawdown Analysis 39

2.5. Hydraulic Conductivity 42

2.5.1. Isotropic Hydraulic Conductivity 42

2.5.2. Anisotropic Hydraulic Conductivity 44

2.6. Probabilistic Assessment of Slope Stability 48

2.6.1. Deterministic and Probabilistic Approach 48

2.6.2. Randomness in Soil Properties 50

2.6.3. Monte-Carlo Simulation 53

2.7. Numerical Modeling to Analyze Saturated-Unsaturated Slope Stability Problem 55

2.7.1. Importance of Numerical Modeling 55

2.7.2. The Role of Geo-Studio in Saturated- Unsaturated Soil Slope Problem 56

Chapter 3. Fundamental Concepts 61

3.1. General 61

3.2. Saturated-Unsaturated Soil 62

3.2.1. Emergence and Application of Unsaturated Soil Mechanics 62

3.2.2. Characterization of Saturated-Unsaturated Soil 66

3.2.3. Soil Suction and Air Pressure 68

3.2.4. Soil Water-Content and Suction Relationship 70

3.2.5. The Permeability-Suction Relationship 77

3.2.6. Evaluation of Characteristic Curves 79

3.2.7. Water Flow in Saturated-Unsaturated Soil 83

3.2.8. Stress-State Variable in Saturated-Unsaturated Soil 85

3.2.9. Shear-Strength of Saturated-Unsaturated Soil 86

3.2.10. Slope Stability in Term of Saturated-Unsaturated Seepage 90

3.3. Rainfall and Drawdown Boundary Conditions 93

3.4. Description of Anisotropic Conductivity 96

3.5. Slope Stability Analysis 99

3.5.1. Basic Principles of Limit Equilibrium 99

3.5.2. Methods of Limit Equilibrium 102

3.5.3. Morgenstern-Price Method 104

3.5.4. Critical Slip Surface in Slope/W 106

3.6. Probabilistic Design in Slopes 109

3.6.1. Basics of Probabilistic Approach 109

3.6.2. Methods for Probabilistic Slope Stability Analysis 113

3.6.3. Reliability Analysis with Monte-Carlo Simulation 114

Chapter 4. Applications 117

4.1. General 117

4.1.1. Arrangement 117

4.1.2. Important Points 119

4.2. Case Study 1 121

4.2.1. Introduction 121

4.2.2. Geometry and Finite Element Model 121

4.2.3. Material Strength Properties and Random Variables 124

4.2.4. Saturated-Unsaturated Seepage Analysis 125

4.2.5. Slope Stability Analysis 131

4.2.6. Pore-Water Pressure and Volumetric Water Content 132

4.2.7. Results of Slope Stability 138

4.2.8. Conclusion 141

4.3. Case Study 2 142

4.3.1. Introduction 142

4.3.2. Geometry and Finite Element Model 142

4.3.3. Material Properties and Random Variables 144

4.3.4. Saturated-Unsaturated Seepage Analysis 144

4.3.5. Rainfall Pattern 147

4.3.6. Slope Stability Analysis 149

4.3.7. Result and Discussion 149

4.3.8. Conclusion 154

4.4. Case Study 3 155

4.4.1. Introduction 155

4.4.2. Geometry and Finite Element Model 155

4.4.3. Material Properties and Random Variables 157

4.4.4. Drawdown Condition 157

4.4.5. Saturated-Unsaturated Seepage Analysis 157

4.4.6. Slope Stability Analysis 158

4.4.7. Result and Discussion 161

4.4.8. Conclusion 168

4.5. Case Study 4 169

4.5.1. Introduction 169

4.5.2. Geometry and Finite Element Model 170

4.5.3. Material Properties and Random Variables 170

4.5.4. Soil Curves for Seepage Analysis 170

4.5.5. Head Difference 170

4.5.6. Slope Stability Analysis 171

4.5.7. Analyses Results 175

4.5.8. Discussion 177

4.5.9. Conclusion 183

Chapter 5. Conclusions and Recommendations 184

5.1. Summary 184

5.2. Conclusions 185

5.3. Recommendations 187

Bibliography 188

요약 198

Abstract 200

Table 2.1: Coefficient of variation of some soil properties 51

Table 2.2: Typical coefficient of variation (c.o.v) for the cohesion 52

Table 2.3: Typical coefficient of variation (c.o.v) for angle of friction 52

Table 3.1: Summary of LE methods 103

Table 4.1: Material strength properties 125

Table 4.2: SWCC properties and saturated hydraulic conductivity for weathered soil 127

Table 4.3: Material properties along with probabilistic characteristics 145

Table 4.4: SWCC properties and saturated hydraulic conductivities 145

Table 4.5: Soil properties along with probabilistic characteristics 159

Table 4.6: The applied drawdown condition 159

Table 4.7: SWCC properties and hydraulic conductivities 159

Table 4.8: Material properties along with probabilistic characteristics 173

Table 4.9: Head difference used in case study 173

Figure 1.1: An overview of case studies presented in research work. 20

Figure 1.2: Flowchart for research methodology. 21

Figure 2.1: Variation in pore water pressure distribution with depth. 31

Figure 2.2: Three drawdown modes for slope stability analysis. 41

Figure 2.3: General framework for probabilistic design. 49

Figure 3.1: Map showing extremely arid, arid and semi-arid regions of the world. 64

Figure 3.2: Classes of unsaturated soil. 65

Figure 3.3: The distribution of subsurface water 67

Figure 3.4: Penetration of air-water interface into soil 73

Figure 3.5: Schematic diagram of hypothetical porous medium. 74

Figure 3.6: Typical form of the SWCC 75

Figure 3.7: SWCCs for some Dutch soils 76

Figure 3.8: Typical suction-dependent hydraulic conductivity function. 78

Figure 3.9: Soil water characteristic curves and permeability suction curves. 82

Figure 3.10: Variation of shear strength with matric suction 89

Figure 3.11: Effect of climatic conditions on pore-water pressure profiles in slope. 92

Figure 3.12: Some common rainfall patterns 94

Figure 3.13: Assigned rainfall conditions on the slope surface in Seep/W 94

Figure 3.14: Head versus time function for reservoir drawdown 95

Figure 3.15: Definition of hydraulic conductivity matrix parameters. 98

Figure 3.16: Various definitions of the factor of safety (FS) 101

Figure 3.17: Typical interslice force functions used in the Morgenstern-Price method. 107

Figure 3.18: Grid and radius option used to search for circular critical slip surface. 108

Figure 3.19: Probability density function of the factor of safety, Fs, and probability of failure, Pf. 110

Figure 3.20: Relationship between reliability index and the probability of failure. 112

Figure 3.21: Flow chart of Monte Carlo method 116

Figure 4.1: (a) Geometry and; (b) FE discretization of single cut-slope 122

Figure 4.2: (a) Geometry and; (b) FE discretization of multi cut-slope 123

Figure 4.3: Soil water characteristic curve for weathered soil. 128

Figure 4.4: Hydraulic conductivity curve of weathered soil for different anisotropic ratios. 130

Figure 4.5: Initial condition 133

Figure 4.6: Single cut-slope 134

Figure 4.7: Multi cut-slope 135

Figure 4.8: Reliability indexes 140

Figure 4.9: (a) Geometry and; (b) FE discretization of multi cut-slope. 143

Figure 4.10: Soil curves 146

Figure 4.11: Rainfall patterns 148

Figure 4.12: Initial condition 150

Figure 4.13: Slope reliability indexes in term of rainfall 151

Figure 4.14: (a) Average volumetric-water content and; (b) average porewater pressure profiles for soil 1 (total rainfall = 2.7m). 153

Figure 4.15: Dam embankment 156

Figure 4.16: Soil curves 160

Figure 4.17: Initial reliability index for three kinds of soils at different anisotropic ratios. 162

Figure 4.18: Flow-net diagrams at reservoir level of 17.5 m 162

Figure 4.19: Pore-water pressure at the slice slip surface at different anisotropic ratios 163

Figure 4.20: Reliability indexes in term of different drawdown ratio 165

Figure 4.21: Pore-water pressure profiles at different drawdown ratios 167

Figure 4.22: (a) Geometry and; (b) FE discretization of dam with toe drain. 172

Figure 4.23: (a) Geometry and; (b) FE discretization of dam without toe-drain. 172

Figure 4.24: Soil curves 174

Figure 4.25: Seepage face in term of head difference 176

Figure 4.26: Reliability index in term of head difference for upstream slope of dam 176

Figure 4.27: Flow-net diagrams for dam with toe-drain at same elevation in reservoir 179

Figure 4.28: Flow-net diagrams for dam with toe-drain at same elevation in reservoir 180

Figure 4.29: Points for evaluation of equi-potential head 181

Figure 4.30: Values of equipotential head at different points of Fig. 4.29 in term of anisotropic ratio. 182

Figure 4.31: Pore-water pressure at the slice surface at different anisotropic ratio for soil 1 182

초록보기 더보기

 사면안정은 지반공학에서 가장 많이 다루는 문제 중 하나이다. 고전적인 사면안정 해석은 흙이 포화상태라는 가정하에 해석방법을 제안하고 있다. 하지만 대부분의 흙들은 풍화상태로 잔류되어 있기 때문에 불포화상태로 주로 존재하고 있으며, 상기 고전적인 해석방법으로는 아주 정확한 결과를 기대하기 어렵다. 특히 불포화상태에서의 흙의 거동특성은 매우 큰 비선형성을 보이기 때문에 정확한 간극수압 상태를 예측하는 것은 포화-불포화 상태에서의 사면문제에서 매우 중요한 요소이다. 그리고 상기 언급한 포화-불포화상태에서의 사면안정 해석을 위해 유한요소법 같은 수치해석이나 한계상태평형법과 같은 고전적 이론 해법을 사용한다.

확률론적 접근방법은 불확실성이 상대적으로 많은 지반공학, 특히 사면 안정해석에서 체계적인 해법을 제공한다. 사면안정의 확률론적 접근에서 불확실성들은 설계의 신뢰도와 정량적인 관계가 있다. 따라서 위험도 기반의 설계절차는 사면 안정의 허용 위협 기준을 결정하기 위한 해석법으로 유용하게 사용될 수 있다. 본 연구에서는 사면안정 해석결과를 확률론적 방법을 사용해 신뢰성 지수를 산출한다. 해석결과의 확률분포를 산출하기 위해 고전적 해법에 사용되는 매개변수들의 분포를 적용하여 몬테카를로 시뮬레이션을 수행한다. 해석결과의 분포는 파괴확률과 사면안정의 신뢰도로 정의된다.

이 연구의 목적은 강우량과 수위저하에 따른 포화-불포화 상태의 사면 안정을 확률론적으로 정량화하는 것이다. 예측 가능한 이런 외부 요인의 영향은 각각 다른 기하학적, 수문학적 특성을 가진 사면 재료를 이용한 예제를 통하여 연구하였다. 예제들은 이방성 투수조건 하에, 강우의 패턴, 비온 뒤 정상상태 및 일시적인 수위저하 등의 주제를 다루었다. 이런 서로 다른 매개변수가 간극수압과 사면안정성에 미치는 영향을 분석하여 결과를 도표의 형태로 나타내었다.

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기