본문바로가기

자료 카테고리

전체 1
도서자료 0
학위논문 1
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (0)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (1)
학위논문 (1)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
논문명/저자명
Evaluation of deformation modulus and shear strength of deep sand in the Nakdong River delta = 낙동강 삼각주의 깊은 모래에 대한 변형계수 및 강도정수 평가 / Vinod Kumar Singh 인기도
발행사항
부산 : 동아대학교 대학원, 2012.8
청구기호
TD 624 -12-791
형태사항
xviii, 156 p. ; 26 cm
자료실
전자자료
제어번호
KDMT1201250829
주기사항
학위논문(박사) -- 동아대학교 대학원, 토목공학과, 2012.8. 지도교수: 정성교
원문

목차보기더보기

Title Page

국문초록

Contents

Notations 15

Abbreviations 19

1. INTRODUCTION 20

1.1. Background 20

1.2. Necessity of This Study 21

1.3. Scope and Outline 23

2. LITERATURE REVIEW 26

2.1. Introduction 26

2.2. Empirical Methods for Index Properties 28

2.2.1. Introduction 28

2.2.2. Soil classification 28

2.2.3. Unit weight 32

2.2.4. Relative density 34

2.2.5. Coefficient of lateral stress 37

2.3. Evaluation Methods of Shear Strength 39

2.3.1. Introduction 39

2.3.2. Laboratory test 39

2.3.3. Field test 46

2.4. Evaluation Methods of Deformation Modulus 51

2.4.1. Introduction 51

2.4.2. Empirical methods for elastic modulus 51

2.4.3. Empirical methods for maximum shear modulus 56

2.4.4. Normalized modulus degradation curve 59

3. STUDY AREA AND TEST PROGRAM 68

3.1. Study Area 68

3.2. Geological Characteristics 69

3.3. Experimental Program 74

3.3.1. Sampling and field tests 75

4. TEST RESULTS OF THE DEEP SAND 90

4.1. Introduction 90

4.2. Physical Properties 91

4.2.1. Sampling log 91

4.2.2. Grain size distribution and specific gravity 91

4.2.3. Maximum and minimum density 94

4.2.4. Soil profiling 96

4.2.5. Unit weight 100

4.2.6. Relative density 103

4.2.7. Coefficient of lateral stress 104

4.3. Shear Strength 104

4.3.1. Shear strength from laboratory test 104

4.3.2. Shear strength from in-situ test 109

4.4. Deformation Modulus 111

4.4.1. Elastic modulus 111

4.4.2. Maximum shear modulus (G0)(이미지참조) 119

5. EVALUATION OF SHEAR STRENGTH 124

5.1. Introduction 124

5.2. Correlation between Estimated Shear Strengths 124

5.3. Development of New Empirical Method for Shear Strength 127

5.4. Summary 129

6. EVALUATION OF DEFORMATION MODULUS 130

6.1. Introduction 130

6.2. Correlation between Estimated Deformational Moduli 131

6.2.1. Elastic modulus 131

6.2.2. Maximum shear modulus 132

6.3. Normalized Modulus Degradation Curve 133

6.3.1. Maximum shear modulus 133

6.3.2. Development of Modulus Degradation Curves 136

6.4. Reevaluation of Elastic Modulus Using Modulus Degradation Curves 142

6.5. Development of New Empirical Method for Deformation Modulus 143

6.6. SUMMARY 145

7. SUMMARY AND CONCLUSIONS 146

7.1. Introduction 146

7.2. Evaluation of Physical Properties 147

7.3. Sample Preparation 148

7.4. Shear Strength 149

7.5. Deformation Modulus 150

7.6. Recommendations 151

REFERENCES 152

APPENDIX 165

ABSTRACT 170

Table 2.1. Applicability and usefulness of in-situ tests 28

Table 2.2. Soil behaviour type classification and approximate soil unit weight 31

Table 2.3. Soil behaviour type boundaries 32

Table 2.4. Tentative values of β for various soil types 47

Table 2.5. Typical values of soil attraction α and tanφ' 48

Table 2.6. Modulus factor a for different soil types 53

Table 4.1. Classification of the sands 99

Table 4.2. Test results obtained from drained triaxial compression test 106

Table 4.3. Peak friction angles obtained from triaxial test at sampling depths 109

Table 4.4. Elastic modulus values obtained from triaxial test at sampling depths 114

Table 4.5. Elastic modulus obtained from RC test 116

Table 4.6. Equivalent elastic modulus obtained from PMT 118

Table 4.7. Test results obtained from RC test 120

Table 4.8. G0 estimated from triaxial tests(이미지참조) 120

Fig. 2.1. Soil behaviour type classification 30

Fig. 2.2. Eslami-Fellenius soil profiling chart 32

Fig. 2.3. Multiple regression relationship to estimate unit weight 34

Fig. 2.4. Effect of sand compressibility on the relationship of qc, σ'v0, and Dr(이미지참조) 36

Fig. 2.5. Relative density relationship suggested by Jamiolkowski et al. (2001) 38

Fig. 2.6. Relationship between bearing capacity number and friction angle from large CC tests 47

Fig. 2.7. Chart for predicting φ'p using CPT profiles based on Durgunoglu and Mitchell (1975)... 47

Fig. 2.8. Es of silica sands estimated using CPT profiles(이미지참조) 53

Fig. 2.9. Dr-kG correlation(이미지참조) 58

Fig. 2.10. Modulus degradation vs. shear strain for initial monotonic (static) and dynamic (cyclic) loading conditions 60

Fig. 2.11. Determination of parameters a and b from the Kondner's hyperbolic stress-strain relationship 62

Fig. 2.12. Modulus degradation curves in terms of τ/τmax (이미지참조) 63

Fig. 2.13. Definition of normalized shear stress 66

Fig. 3.1. Location map 68

Fig. 3.2. Geological map around Busan Area 69

Fig. 3.3. Longitudinal section of the Nakdong River deltaic area 70

Fig. 3.4. Stratification at the MJ test site 71

Fig. 3.5. Depositional chronology of Busan and other clays 72

Fig. 3.6. Changes of sea level and ages of the deltaic deposits 72

Fig. 3.7. Depositional environment and geotechnical properties at Hwajeon site 73

Fig. 3.8. Stratigraphy and depositional units with sediment accumulation curve 74

Fig. 3.9. Investigation plan of the MJ site 76

Fig. 3.10. CPTu data point at depth corresponding to SPT sample data 77

Fig. 3.11. DMT/SDMT equipment and its schematic layout 80

Fig. 3.12. Seismograms obtained from SDMT 80

Fig. 3.13. PMT connection diagram and control unit 81

Fig. 3.14. Evaluation of sample homogeneity 84

Fig. 3.15. Automated CKC triaxial testing system 85

Fig. 3.16. General configuration of RCTS equipment 87

Fig. 3.17. Schematic diagram of the motion monitoring system in RC test 88

Fig. 3.18. RC testing technique 89

Fig. 4.1. Typical sand samples 92

Fig. 4.2. Sampling logs 92

Fig. 4.3. Grain size distribution curves 92

Fig. 4.4. Physical properties 93

Fig. 4.5. Microscopic images of sands 94

Fig. 4.6. Increase in maximum density due to additional densification process 96

Fig. 4.7. CPTu profiles 97

Fig. 4.8. Soil profiling based on soil behaviour type index (Ic)(이미지참조) 98

Fig. 4.9. Sand classification and CPTu profiles 99

Fig. 4.10. Comparison of γt values estimated using CPT-based empirical equations(이미지참조) 101

Fig. 4.11. Comparison of γt values estimated using Vs-based empirical equations(이미지참조) 101

Fig. 4.12. Comparison of γt values back-calculated at laboratory with that of the new developed equation(이미지참조) 102

Fig. 4.13. Relation between the back-calculated unit weight and CPT parameter 103

Fig. 4.14. Dr-profiles estimated from CPTu(이미지참조) 104

Fig. 4.15. K0-profiles estimated from CPTu(이미지참조) 104

Fig. 4.16. Typical failures mode at peak and final stages during triaxial testing 106

Fig. 4.17. Stress-strain relationships of sand type II at MDIP-2 107

Fig. 4.18. Stress-strain curves at two different strain rates 107

Fig. 4.19. Friction angle (φ'TC) vs. confining stress (σ'c)(이미지참조) 108

Fig. 4.20. Friction angle (φ'TC) vs. relative density (Dr)(이미지참조) 108

Fig. 4.21. Correlation among the peak friction angle (φ'TC), confining stress (σ'c), and Dr from the triaxial tests(이미지참조) 108

Fig. 4.22. Correlation between φ'TC-Dr-σ'c for samples at each depth(이미지참조) 109

Fig. 4.23. Comparison of φ'-profiles estimated from various empirical equations 110

Fig. 4.24. Variation in friction angles in terms of soil compressibility 111

Fig. 4.25. Characteristic stiffness-strain curve 112

Fig. 4.26. Typical triaxial compression test results 113

Fig. 4.27. E25(TX) vs. σ'c plots for samples at each depth(이미지참조) 113

Fig. 4.28. Typical modulus degradation curves from RC tests 114

Fig. 4.29. Modulus degradation curves from RC tests 115

Fig. 4.30. Average axial strain corresponding to E25(이미지참조) 115

Fig. 4.31. Comparison of elastic modulus profiles from CPT based equations 117

Fig. 4.32. Typical pressure-strain curve obtained from PMT 118

Fig. 4.33. Unloading-reloading loops from pressuremeter test 118

Fig. 4.34. Cavity pressure vs. probe radius curve obtained from PMT 118

Fig. 4.35. G0(RC) vs. σ'c plots for samples at each depth(이미지참조) 119

Fig. 4.36. Determination of soil parameters Cg and ng(이미지참조) 120

Fig. 4.37. Comparison of maximum shear modulus profiles from CPT based equations 121

Fig. 4.38. In-situ shear wave velocity profiles measured from SDMT 122

Fig. 5.1. Relationship between bearing capacity number and friction angle obtained from triaxial compression tests 125

Fig. 5.2. Comparison of friction angles estimated from various methods 126

Fig. 5.3. Variation of tan φ', Ic, and (qc/σ'v) with depth(이미지참조) 127

Fig. 5.4. Variation of tan φ', and (qc/σ'v) with Ic(이미지참조) 127

Fig. 5.5. Relationship between tanφ'TX/Ic10 and (qc/σ'v0)0.1/Ic10(이미지참조) 128

Fig. 5.6. Comparison between the measured and estimated φ' values 128

Fig. 5.7. Comparison between the measured and predicted friction angle profiles 129

Fig. 6.1. Comparison of elastic modulus values obtained from different tests 132

Fig. 6.2. Comparison of G0 values obtained from various tests(이미지참조) 133

Fig. 6.3. Relationship between back-calculated kG and Dr(이미지참조) 134

Fig. 6.4. Comparison of G0 values obtained from various tests with the CPT-based existing and the newly developed equations(이미지참조) 135

Fig. 6.5. Typical triaxial compression test results 137

Fig. 6.6. Comparison between measured and calculated elastic moduli 137

Fig. 6.7. Modulus degradation curve in terms of normalized elastic modulus and stress ratio from triaxial tests 138

Fig. 6.8. Normalized modulus degradation curves obtained from triaxial tests 139

Fig. 6.9. Curve fitting of unloading curve 140

Fig. 6.10. Measured and back-calculated pressure-strain curves from MB4-2 (35-36m) 141

Fig. 6.11. Modulus degradation curves obtained from PMT for all sands 142

Fig. 6.12. Elastic modulus values re-evaluated using different tests results and predicted using the newly developed equation 143

Fig. 6.13. E25/G0 vs. qt/σ'v0 relationship(이미지참조) 144

초록보기 더보기

 낙동강 삼각주 지역은 부산광역시의 서쪽에 위치하며, 약 20㎢에 걸쳐 두꺼운 퇴적층으로 덮여있다. 이 퇴적층은 때때로 100m를 초과하며, 대략 5개의 층으로 구성되어 있다: 상부 실트질 모래층, 상부 점토층, 하부 모래층, 하부 점토층 및 모래/자갈층의 순서로 기반암 위에 놓여있다. 이 지역은 1990년대 초기부터 부산신항, 산업 및 주거단지 등을 조성하기 위한 수많은 매립사업이 진행되어 왔다. 최근에 이르러 조성된 지반 위에 고층건물 및 대형 공공 구조물 등이 축조되기 시작하였다. 국내에서는 통상 그러한 구조물의 기초로서 강관말뚝을 사용하여 기반암 또는 조밀한 모래층과 같은 지지층까지 근입하고 있다. 이러한 경우에 말뚝길이는 70-80m에 달하기 때문에 기초공사를 위하여 고비용이 소요된다. 따라서 대안으로 고강도콘크리트(PHC)를 하부 모래층 내에 근입하는 것을 고려하였다. 그러나 점토지반과는 달리 하부 모래층에 대한 지반특성은 거의 조사되지 않아서 모래에 대한 체계적인 지반조사가 요구되었다.

본 연구는 하부 모래의 주된 지반정수인 전단강도 및 변형계수를 평가하는데 초점을 맞추었다. 사질토의 전단강도는 일반적으로 내부마찰각(Φ')으로 표현되며, 변형계수는 미소변형 상태에서의 전단계수(G0)와 중간 변형률(일반적으로 25% 파괴강도, E25)에서의 탄성계수로 정의한다. 모래의 비교란 시료채취는 어렵기 때문에 모래의 토질정수는 경험적 방법에 주로 의존하고 있다. 비록 콘관입시험(CPT)에 근거하여 수많은 경험적 방법이 제안되어 있지만, 하부 모래층에 적용한 결과는 아주 넓은 범위에 걸쳐 변화한다. 이러한 이유는 자연 모래의 퇴적특성을 충분히 고려하지 않고 여러 종류의 상업용 모래를 사용하여 경험식들을 제안하였기 때문이다. 특히, 변형계수는 모래의 종류, 연령, 응력이력, 응력 이방성 등과 같은 자연 모래의 퇴적특성에 크게 좌우된다. 그래서 기존의 경험식들을 해당지역의 자연모래에 적합하게 적용할 수 있는지를 검증하여야 하며, 동시에 자연점토의 고유특성을 고려할 수 있는 특정한 경험식을 개발하여야 한다.

이러한 목적을 달성하기 위하여 체계적인 실험계획이 준비되었다. 즉, 명지지역의 두 지점에서 시료채취, 물리성 실험, 시료준비, 실내 전단실험 [삼축압축시험(TX) 및 공진주 시험(RC)] 및 현장토질실험 [공내재하시험(PMT), CPTu 및 전단파 팽창시험(SDMT)]을 실시하였다. 교란 모래는 분할관 샘플러(split spoon sampler)을 사용하여 채취하였다. 하부 모래층은 물리적 특성과 "거동지수(Soil behavior type index)"에 근거하여 3종류로 구분하였다. 교란시료는 "슬러리 변위법(Slurry displacement method)"에 의하여 재구성하였으며, 총 39개의 삼축압축시험이 수행되었다.

삼축압축실험으로 얻어진 전단강도는 6개의 기존 경험식(유효과재응력과 콘저항에 근거한)으로 평가된 값을 과대 또는 과소평가하였다. 따라서 기존 경험식에서 고려한 두 함수뿐만 아니라 모래의 종류를 고려하여 새로운 경험식을 개발하였다. 개발된 새로운 경험식은 기존의 경험식들에 비하여 전단강도를 아주 잘 예측한다. 한편, 위에서 언급한 여러 종류의 실험으로 얻어진 변형계수는 기존 경험식들을 사용하여 예측한 값들과 비교하였다. 그 결과, TX와 PMT 실험결과를 통상적인 방법으로 분석하여 얻어진 탄성계수는 현장 값들에 비하여 과소평가되었다. 따라서 TX, RC 및 PMT 결과를 사용하여 곡선조정계수(∫ 및 g)를 산정하고 SDMT로부터 얻어진 G0를 적용하여 "정규화 변형감소곡선(normalized modulus degradation curve)"를 구축하였다. 이 곡선을 이용하여 E25를 재평가 하였다. TX실험결과를 사용하여 재평가된 값(E25)은 PMT에 의한 값들 및 G0에 근거한 경험식에 의한 결과와 아주 잘 일치하였다. 마침내, E25를 산정하기 위한 경험식은 CPT결과를 이용할 수 있도록 개발하였으며, 실험결과와의 비교를 통하여 적용성이 입증되었다.

본 연구로부터 얻은 중요한 결론은 모래의 전단강도와 변형계수를 효과적으로 예측하기 위해서는 어떤 지역의 자연 모래에 대한 고유특성을 충분히 반영하여야 한다는 것이다. 따라서 기존의 경험식에서 고려한 모래의 조밀도 뿐만 아니라 퇴적토의 연령, 응력이력 및 모래 종류와 같은 퇴적특성을 고려하여야 한다. 향후 연구는 새로운 경험식이 세계 도처의 다른 모래에 적용될 수 있는 지의 여부이다. 그러므로, 새로운 경험식은 여러 다른 모래에 적용하여 각각의 퇴적특성에 적합하도록 적절히 수정하는 것이 극히 바람직하다.

참고문헌 (133건) : 자료제공( 네이버학술정보 )더보기

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 1974. Dynamic modulus of cohesive soils. PhD Dissertation, The University of Michigan. 미소장
2 ASTM D1586-11. 2011. Standard test method for standard penetration test (SPT) and split-barrel sampling of soils. Annual Book of... 미소장
3 ASTM D2487-00. 2000. Standard classification of soils for engineering purposes (Unified Soil Classification System). Annual Book of... 미소장
4 ASTM D4015-07. 2007. Standard test methods for modulus and damping of soils by resonant-column method. Annual Book of ASTM... 미소장
5 ASTM D422-63. 2007. Standard test method for particle-size analysis of soils. Annual Book of ASTM Standards, Vol. 04.08, ASTM... 미소장
6 ASTM D4253-00. 2000. Standard test methods for maximum index density and unit weight of soils using a vibratory table. Annual... 미소장
7 ASTM D4254-00. 2000. Standard test methods for minimum index density and unit weight of soils and calculation of relative density.... 미소장
8 ASTM D4719-00. 2000. Standard test methods for prebored pressuremeter testing in soils. Annual Book of ASTM Standards, Vol.... 미소장
9 ASTM D854-00. 2000. Standard test methods for specific gravity of soil solids by water pycnometer. Annual Book of ASTM... 미소장
10 1989. Modulus of sands from CPTs and DMTs. Proceedings, 12th International Conference on Soil Mechanics and Foundation... 미소장
11 1981. Cone resistance in dry NC and OC sands. Proc. ASCE Symposium on Cone Penetration Testing and Experience, St. Louis. 미소장
12 1986. Interpretation of CPTs and CPTUs; 2nd part: drained penetration of sands. Proceedings of the Fourth International... 미소장
13 1982. Design parameters for sands from CPT. Proceedings of the Second European Symposium on Penetration Testing, Vol. 2... 미소장
14 1988. Seismic cone in Po River sand. Penetration Testing, Vol. 2 (Proc. ISOPT-1, Orlando, Fla.), Balkema, Rotterdam, The... 미소장
15 1975. Theory of deep site static cone penetration resistance. Massachusetts Institute of Technology, Department of Civil... 미소장
16 1965. The friction jacket cone as an aid in determining soil profile. In Proceeding of the 6th International Conference on Soil... 미소장
17 Interpretation of moduli from self-boring pressuremeter tests in sand 네이버 미소장
18 The strength and dilatancy of sands 네이버 미소장
19 1989. Small is beautiful: the stiffness of soils at small strains. Canadian Geotechnical Journal, Vol. 26, No. 4, pp. 499–516. 미소장
20 1990. Relationship between the unload shear modulus from pressuremeter tests and the maximum shear modulus for sand.... 미소장
21 2004. Mechanical behavior of silty and clayey sands. PhD thesis, Purdue Univ., West Lafayette, Ind. 미소장
22 A New Slurry-Based Method of Preparation of Specimens of Sand Containing Fines 네이버 미소장
23 CFEM 1985. Canadian foundation engineering manual. Second edition, Canadian Geotechnical Society, 456 p. 미소장
24 CFEM 1992. Canadian foundation engineering manual. Third edition, Canadian Geotechnical Society, 512 p. 미소장
25 CFEM 2006. Canadian foundation engineering manual. Fourth edition, Canadian Geotechnical Society, 488 p. 미소장
26 1990. Automatic triaxial testing system user’s guide. Soil Engineering Equipment Company, San Francisco, California. 미소장
27 Determination of Drained Friction Angle of Sands from CPT 네이버 미소장
28 2003. Theme lecture: Geotechnical characteristics of Pusan clays. In Proceeding of Korea-Japan Joint Workshop, Characterization... 미소장
29 Undrained Shear Strength from Field Vane Test on Busan Clay 네이버 미소장
30 Geological and Geotechnical Characteristics of Marine Clays at the Busan New Port 네이버 미소장
31 1995. Pressuremeters in geotechnical design. Blackie Academic & Professional, 364p. 미소장
32 Determining the Maximum Density of Sands by Pluviation 네이버 미소장
33 Nonlinear Analysis of Stress and Strain in Soils 네이버 미소장
34 1975. Static penetration resistance of soils. I & II. Proceedings of the Conference on In Situ Measurement of Soil Properties,... 미소장
35 1996. Cone penetration test to evaluate bearing capacity of foundation in sand. In Proceedings of the 49th Canadian Geotechnical... 미소장
36 Pile capacity by direct CPT and CPTu methods applied to 102 case histories 네이버 미소장
37 1991. Shear modulus of cohesionless soil: variation with stress and strain level. Canadian Geotechnical Journal, 29, 157-161. 미소장
38 1998. Deformation and in situ stress measurement. Geotechnical Site Characterization, Proc. 1st international Conference on Site... 미소장
39 A finite element study of the pressuremeter test in sand using a nonlinear elastic plastic model 네이버 미소장
40 1994. Towards a rational method of predicting settlements of spread footings on sand. Vertical and Horizontal Deformations of... 미소장
41 2006. Basics of foundation design, Electronic 2nd edition. 미소장
42 Long-Term Monitoring of Strain in Instrumented Piles 네이버 미소장
43 Shear modulus and damping in soils 네이버 미소장
44 Sweden: Some Current Observations on Health Services, Housing and Resource Utilization for the Elderly 네이버 미소장
45 1998. Advanced interpretation of field tests. Geotechnical Site Characterization, Balkema, Rotterdam 미소장
46 Calibration chamber tests of a cone penetrometer in sand 네이버 미소장
47 2001. In situ tests and pre-failure deformation behaviour of soils. Pre-failure deformation characteristic of geomaterials, pp.... 미소장
48 1975. Investigation of K0 testing in cohesionless soils. Technical Report 5–75–16, US Army Engineer Waterways Experiment Station,... 미소장
49 1949. Subsurface exploration and sampling of soils for civil engineering purposes. U.S. Army Engineers' Waterways. 미소장
50 1944. The coefficient of earth pressure at rest. Journal of the Society of Hungarian Architects and Engineers, 355–8. 미소장
51 2001. Evaluation of relative density and shear strength of sands from cone penetration test and flat dilatometer test. Soil... 미소장
52 1985. New developments in field and laboratory testing of soils. State of the art report. Proceedings of the 11th International... 미소장
53 1963. Soil compressibility as determined by oedometer and triaxial tests. Proceedings of the European Conference on Soil Mechanics... 미소장
54 1974. Effective stress interpretation of in situ static penetration tests. Proceedings of the European Symposium on Penetration... 미소장
55 2006. Soil liquefaction- a critical state approach. London and New York, Taylor & Francis. 미소장
56 Use of CPTu to Estimate Equivalent SPT N~6~0 네이버 미소장
57 JIS A 1224 2000. Test method for minimum and maximum densities of sands. Japanese Geotechnical Society, Soil Testing Standards,... 미소장
58 New Slurry Displacement Method for Reconstitution of Highly Gap-Graded Specimens for Laboratory Element Testing 네이버 미소장
59 1991. Deformational characteristic of soils at small to intermediate strain rom cyclic tests. PhD Dissertation, The University of... 미소장
60 2001. Dynamic deformation characteristics of cohesionless soils in Korea using resonant column tests. Korean Geotechnical Journal,... 미소장
61 2009. Dynamic Shear Properties of Nakdong River Sand Determined by Resonant Column/Torsional Shear Test. Korean Geotechnical... 미소장
62 2004. Recent and future practices related to soft clay engineering in the Nakdong River Estuary. Pp. 1-1–1-19 in S.G. Chung... 미소장
63 London: A Life in Maps by Peter Whitfield; 네이버 미소장
64 Distribution of Residual Load and True Shaft Resistance for a Driven Instrumented Test Pile Reply to Discussion 네이버 미소장
65 Hyperbolic Stress-Strain Response: Cohesive Soils 네이버 미소장
66 Reliability of CPT I c as an index for mechanical behaviour classification of soils 네이버 미소장
67 SAND SAMPLE PREPARATION-THE SLURRY DEPOSITION METHOD 네이버 미소장
68 1990. Manual on estimating soil properties for foundation design. Report EPRI EL-6800, Electric Power Research Institute, Palo Alto,... 미소장
69 In Situ Measurement of Nonlinear Shear Modulus of Silty Soil 네이버 미소장
70 1973. Physiography of the Nakdong river delta. Journal of Geography, 8(1), 8-23. (in Korean) 미소장
71 1979. Soil mechanics. John Wiley & Sons. Inc., New York. 미소장
72 Stiffness degradation and shear strength of silty sands 네이버 미소장
73 1988. An automated triaxial testing system. Advanced Triaxial Testing of Soils and Rocks. ASTM STP 977, pp. 95-106. 미소장
74 Maximum Dry Density of Cohesionless Soils by Pluviation and by ASTM D 4253-83: A Comparative Study 네이버 미소장
75 1992. Practical use of CPT correlations in sand based on calibration chamber tests. Proceedings of the International Symposium on... 미소장
76 1983. Interpretation of cone penetrometer data for offshore sands”. Proceedings of the Offshore Technology Conference,... 미소장
77 1997. Cone penetration testing in geotechnical practice. Blackie Academic, EF Spon/Routledge Publishers, New York, 312 pp. 미소장
78 1980. In situ tests by flat dilatometer, Journal of Geotechnical Engineering Division, proceedings of the ASCE. Vol. 106, No. GT3,... 미소장
79 1988. On the field determination of K0 in sand. Panel discussion at the 11th International Conference on Soil Mechanics and... 미소장
80 2008. In situ tests by seismic dilatometer (SDMT). From Research to Practice in Geotechnical Engineering, ASCE GSP 180: 292-311. 미소장
81 1994. Settlement analysis of compacted fill. Proceedings, 13th International Conference on Soil Mechanics and Foundation... 미소장
82 Footings supported on settlement-reducing vibrated soil nails 네이버 미소장
83 2001. Stress-strain-strength-flow parameters from enhanced in-situ tests. Proceedings International Conference on In-Situ... 미소장
84 Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts. 네이버 미소장
85 1992. Tentative method for estimating σ΄ho from qc data in sands. Proceedings of the International Symposium on Calibration... 미소장
86 Cone Penetration Testing A Synthesis of Highway Practice 네이버 미소장
87 London: A Life in Maps by Peter Whitfield; 네이버 미소장
88 Versatile site characterization by seismic piezocone 네이버 미소장
89 1982. K0-OCR relationships in soil. Journal of Geotechnical Engineering, 108(6), 851–72. 미소장
90 2006a. In-situ test calibrations for evaluating soil parameters. Overview Paper, Characterization and Engineering Properties of... 미소장
91 2006b. The 2nd James K. Mitchell Lecture: Undisturbed sand strength from seismic cone tests. Geomechanics and Geoengineering,... 미소장
92 2010. Soil unit weight estimation from CPTs. 2nd International Symposium on Cone Penetration Testing (CPT 10). 미소장
93 1999. Small and large strain soil properties from seismic flat dilatometer tests. Pre-failure Deformation Characteristics of... 미소장
94 1986. Determining sand strength by cone penetrometer. Use of In-Situ Tests in Geotechnical Engineering (GSP 6), Reston, Va., pp.... 미소장
95 A sample preparation method and its effect on static and cyclic deformation-strength properties of sand. 네이버 미소장
96 A sample preparation method and its effect on static and cyclic deformation-strength properties of sand. 네이버 미소장
97 1975. The effects of method of sample preparation on the cyclic stress—strain behavior of sands. Report No. EERC 75-18, Univ.... 미소장
98 1999. Determination of maximum and minimum densities of poorly graded sands using a simplified method. Geotechnical Testing Journal,... 미소장
99 Experimental Study of Anisotropic Shear Strength of Sand by Plane Strain Test 네이버 미소장
100 OYO (2000). Operation manual, Model-4180 elastmeter HQ sonde. Manual part No. 18991-0238. Japan, p. 24. 미소장
101 Pro-arrhythmic effect of nicorandil in isolated rabbit atria and its suppression by tolbutamide and quinidine 네이버 미소장
102 2006. Guide to cone penetration testing and its application to geotechnical engineering. Gregg Drilling & Testing Inc., California,... 미소장
103 2012. Interpretation of in-situ tests – some insights. Mitchell Lecture, ISC’4, Brazil (in print) 미소장
104 1982. In-situ testing of soil with emphasis on its application to liquefaction assessment, PhD thesis, University of British Columbia. 미소장
105 Interpretation of cone penetration tests - a unified approach 네이버 미소장
106 Evaluating cyclic liquefaction potential using the cone penetration test 네이버 미소장
107 2010. Estimating soil unit weight from CPT. 2nd International Symposium on Cone Penetration Testing (CPT 10). 미소장
108 Interpretation of cone penetration tests. Part I: Sand 네이버 미소장
109 Soil classification using the cone penetration test 네이버 미소장
110 1986. Use of piezometer cone data. Use of In-Situ Tests in Geotechnical Engineering (GSP 6), American Society of Civil Engineers,... 미소장
111 2002. Engineering geological characteristics of the Holocene marine clayey sediments in the estuary of Nakdong River. PhD Thesis,... 미소장
112 Late Quaternary Paleoenvironmental Changes in the Western Nakdong River delta 소장
113 Shear Strength and Stiffness of Silty Sand 네이버 미소장
114 Calibration Chamber Size Effects on Penetration Resistance in Sand 네이버 미소장
115 1978. Guidelines for cone penetration test: performance and design, Report FHWA-TS-78-209, Federal Highway Administration,... 미소장
116 Static Cone to Compute Static Settlement over Sand 네이버 미소장
117 Chemical Impregnation of Cohesionless Soils 네이버 미소장
118 A Review of Instrumentation for Measuring Small Strains During Triaxial Testing of Soil Specimens 네이버 미소장
119 1971. Simplified procedure for evaluating soil liquefaction potential. ASCE Specialty Conference In Situ ’86, Journal of Soil M. Vol.... 미소장
120 1970. Soil moduli and damping factors for dynamics response analysis. Report No. EERC 70-10, University of California, Berkeley,... 미소장
121 Ground freezing and sampling of foundation soils at Duncan Dam 네이버 미소장
122 1989. Evaluation of soil parameters from piezocone tests. Transportation Research Record 1235, Transportation Research Board,... 미소장
123 1988. Piezocone tests in silty soils. Penetration Testing. Vol. 2, Balkema, Rotterdam, The Netherlands, pp. 955–974. 미소장
124 2009. Maximum and minimum densities obtained from various test methods on cohesionless soils. International Symposium on Urban... 미소장
125 Polymer Impregnation to Assist Undisturbed Sampling of Cohesionless Soils 네이버 미소장
126 1991. Stiffness of sands in monotonic and cyclic torsional simple shear. Geotechnical Engineering Congress, Geotechnical Special... 미소장
127 1994. Liquefaction of silty soils. Ground Failures Under Cyclic Conditions, ASCE GSP 44, pp. 1–16. 미소장
128 Relative Density of Pluviated Sand Samples 네이버 미소장
129 Expansion of Cavities in Infinite Soil Mass 네이버 미소장
130 1977. NCHRP synthesis of highway practice 42: design of pile foundations. Transportation Research Board, National Research... 미소장
131 1981. Cone resistance, relative density and friction angle. Symposium on Cone Penetration Testing and Experience, ASCE, 178-208. 미소장
132 2004. In situ soil testing: from mechanics to interpretation. Proceedings ISC-2 on Geotechnical and Geophysical Site... 미소장
133 Statistical to Fuzzy Approach Toward CPT Soil Classification 네이버 미소장

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기