본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

Contents

Summary 9

I. Introduction 10

II. Design and modeling 19

A. Harvester design 19

B. Operation principle 22

1. Output voltage induced by external vibration 22

2. Magnetic flux density at different gap between the coil and magnet 24

C. Fabrication 28

III. Experimental results and discussion 32

A. Comparison between estimated output voltage and experimental results 35

B. Effect of winding height on output power 44

C. Effect of the channel surface roughness 48

D. Effect of ferrofluid droplet size 58

E. Reliability improvement using ferrofluid as a lubricant 60

IV. Conclusion 62

References 63

국문초록

List of Tables

Table 1. Comparison of performance of published vibration energy harvesters 13

Table 2. Surface roughness of different types of channels 48

List of Figures

Figure 1. Schematics of typical energy harvesters using three different transduction mechanisms: (a) piezoelectric, (b) electrostatic, (c)... 12

Figure 2. Comparison of electromagnetic power generator structures: (a) axial-flux rotary power generator, (b) linear vibration energy harvester 17

Figure 3. Schematic diagram of the proposed electromagnetic energy harvester (unit: mm): (a) top side, (b) bottom side 21

Figure 4. Captured image of FEA simulation result: (a) mesh generation, (b) magnetic flux density 26

Figure 5. Simulation and curve fitting results of the magnetic flux density at various gaps from the magnet: (a) magnetic flux along x axis at various... 27

Figure 6. Proof-of-concept energy harvester after assembly: (a) pole piece covering the magnets and acrylic plate on top has been removed for... 30

Figure 7. Magnet array: (a) in pristine condition, (b) after ferrofluid droplet dispense 31

Figure 8. Schematic diagram of experimental setup for the vibration exciter test 33

Figure 9. (a) Experimental setup for the vibration exciter test, (b) input acceleration and open-circuit voltage of the device with 5uL ferrofluid 34

Figure 10. Expected time variation under external acceleration of 3g at 13㎐: (a) displacement of magnet, (b) velocity of magnet, (c)... 36

Figure 11. Captured image of magnet array with ferrofluid during vibration exciter test: (a) start of a cycle, (b) after 0.01875sec, (c) after... 39

Figure 12. Motion of the magnet array in the harvester under the 3g acceleration in 13㎐: (a) experimentally determined position of the... 42

Figure 13. Comparison of the open circuit voltage waveforms: (a) calculated output voltage, (b) experimented output voltage 43

Figure 14. Simulation result of the normal magnetic flux density at various gaps 45

Figure 15. Power and output voltage at various load resistances with different copper winding height 46

Figure 16. Copper windings before and after optimization: 2 ㎜-height hand-wound copper winding with 50 turns (b) 2㎜-height self-... 47

Figure 17. 3D profile for surface roughness of two types of housing channel (a) type 1, (b) type 2 49

Figure 18. Peak-to-peak open circuit voltage at various input frequencies and accelerations when channels of different surface roughness are used:... 52

Figure 19. RMS open circuit voltage at various input frequencies and accelerations when channels of different surface roughness are used: (a)... 55

Figure 20. Output power and voltage at various load resistances for devices with different channel surface roughness: (a) type 1, (b) type (2) 57

Figure 21. Comparison of the effect of ferrofluid droplet size: (a) average power at various load resistances (b) power and RMS voltage at 52Ω load resistance 59

Figure 22. Output power and voltage variation during cyclic testing (input acceleration: 3g, input frequency: 13㎐) 61

초록보기

 최근 무선 센서 및 의료목적의 체내이식형 기기, 저전력 웨어러블 전자기기 등 다양한 분야에서 환경 에너지를 이용한 에너지 하베스팅 기술이 기존 배터리의 대안으로서 많은 관심을 받고 있다. 진동형 에너지 하베스팅은 풍부한 에너지원과 간단한 메커니즘, 높은 전력 생성 효율 등으로 인하여 많은 연구가 이루어지고 있다. 본 논문에서는 영구자석 질량체와 자성유체 윤활제를 이용한 전자기 방식 진동형 에너지 하베스터를 제안한다. 외부 진동이 하베스터에 인가되면 채널 내 자석 질량체의 자유 진동으로 전력이 생성되며, 자성유체가 윤활제로써 마찰력을 줄이고 자석 손상을 방지한다. 제작된 하베스터의 특성을 분석하기 위해 다양한 조건에서 가진기 실험이 진행되었다. 2mm 높이의 자활 동선 코일과 비교적 거친 표면의 채널을 가진 하우징으로 제작된 하베스터에서 5μL의 자성유체를 사용했을 때 60Ω의 부하 저항에서 자성유체를 사용하지 않았을 때보다 5.47% 향상된 최대 489.95μW의 전력이 생성되었다. 자성유체를 사용하지 않은 경우 93,600회 작동 후 전력이 60% 감소된 반면, 자성유체를 사용한 경우 단 1%만 감소하여 장기적인 안정성 향상에도 높은 효과가 있음을 실험적으로 확인하였다.