권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
표제지
목차
I. 서론 12
1.1. 연구배경 및 목적 12
1.2. 연구내용 및 범위 14
1.3. 연구동향 15
1.3.1. 시멘트 혼화용 폴리머 EVA의 연구동향 15
1.3.2. 섬유를 활용한 연구동향 16
II. 이론적 배경 18
2.1. 폴리머 시멘트 콘크리트 18
2.1.1. 시멘트 혼화용 폴리머 18
2.1.2. 폴리머 필름의 메카니즘 19
2.1.3. EVA 재유화형 분말수지 20
2.2. 섬유보강 콘크리트 21
2.2.1. 섬유의 종류 및 특성 21
2.2.2. 섬유보강 콘크리트의 특성 22
III. 섬유보강 EVA 콘크리트의 물리·역학적 특성 24
3.1. 개요 24
3.2. 재료 및 방법 25
3.2.1. 사용재료 25
3.2.2. 공시체 제작 및 양생 31
3.2.3. 시험방법 34
3.3. 결과 및 고찰 39
3.3.1. 슬럼프 39
3.3.2. 공기량 41
3.3.3. 압축강도 42
3.3.4. 휨강도 48
3.3.5. 정탄성계수 54
3.3.6. 응력-변형률 58
3.3.7. 건조수축 61
3.3.8. 흡수율 65
3.3.9. 염소이온 투과저항성 71
IV. 섬유보강 EVA 콘크리트의 내구 특성 76
4.1. 개요 76
4.2. 재료 및 방법 77
4.2.1. 사용재료 77
4.2.2. 공시체 제작 및 양생 77
4.2.3. 시험방법 77
4.3. 결과 및 고찰 81
4.3.1. 동결융해저항성 81
4.3.2. 내마모성 94
4.3.3. 내충격성 100
4.3.4. 내산성 107
V. 섬유보강 EVA 콘크리트의 휨인성 117
5.1. 개요 117
5.2. 재료 및 방법 118
5.2.1. 사용재료 및 공시체 제작 118
5.2.2. 시험방법 118
5.2.3. 휨인성 평가 방법 120
5.3. 결과 및 고찰 121
5.3.1. 하중-처짐곡선 121
5.3.2. 휨인성지수 126
VI. 결론 130
참고문헌 133
ABSTRACT 143
Table 1. Physical properties of fibers 21
Table 2. Physical properties of normal portland cement 25
Table 3. Chemical compositions of normal portland cement 25
Table 4. Physical properties of aggregate 25
Table 5. Physical properties of EVA redispersible polymer powder 26
Table 6. Physical properties of fly ash 27
Table 7. Chemical compositions of fly ash 27
Table 8. Physical properties of polypropylene fiber 28
Table 9. Physical properties of steel fiber 29
Table 10. Physical properties of superplasticizer 30
Table 11. Physical properties of deforming agent 30
Table 12. Mix designs of EVA concrete reinforced PP fiber 32
Table 13. Mix designs of EVA concrete reinforced steel fiber 33
Table 14. Chloride ion permeability based on charge passed 37
Table 15. Results of slump and air content test 39
Table 16. Compressive strength of EVA concrete reinforced fiber 42
Table 17. Flexural strength of EVA concrete reinforced fiber 48
Table 18. Static modulus of elasticity of EVA concrete reinforced fiber 54
Table 19. Dry shrinkage strain of EVA concrete reinforced fiber 61
Table 20. Water absorption ratio of EVA concrete reinforced fiber 65
Table 21. Chloride ion penetration of EVA concrete reinforced fiber 71
Table 22. Weight reduction ratio by freezing and thawing resistance test 82
Table 23. Relative dynamic modulus of elasticity and durability factor by freezing and thawing resistance test 86
Table 24. Abrasion ratio of EVA concrete reinforced fiber 94
Table 25. Impact resistance of EVA concrete reinforced fiber 100
Table 26. Weight reduction ratio with immersed period of EVA concrete reinforced PP fiber 107
Table 27. Weight reduction ratio with immersed period of EVA concrete reinforced steel fiber 108
Table 28. Central deflection in initial cracking load and maximum load of EVA concrete reinforced PP fiber 121
Table 29. Central deflection in initial cracking load and maximum load of EVA concrete reinforced steel fiber 122
Table 30. Test results of flexural toughness index 126
Fig. 1. Distribution curve of aggregate size 26
Fig. 2. Scheme of chloride ion permeability test 38
Fig. 3. Compressive strength with EVA contents 44
Fig. 4. Compressive strength with PP fiber contents of EVA concrete 45
Fig. 5. Compressive strength with steel fiber contents of EVA concrete 47
Fig. 6. Flexural strength with EVA contents 50
Fig. 7. Flexural strength with PP fiber contents of EVA concrete 51
Fig. 8. Flexural strength with steel fiber contents of EVA concrete 53
Fig. 9. Static modulus of elasticity with EVA contents 55
Fig. 10. Static modulus of elasticity with fiber contents of EVA concrete 57
Fig. 11. Stress-strain curve with EVA contents 58
Fig. 12. Stress-strain curve with PP fiber contents of EVA contents 5.0% 59
Fig. 13. Stress-strain curve with steel fiber contents of EVA contents 5.0% 60
Fig. 14. Dry shrinkage strain with curing period of EVA contents 62
Fig. 15. Dry shrinkage strain with curing period of PP fiber contents on EVA contents 10% 64
Fig. 16. Dry shrinkage strain with curing period of steel fiber contents on EVA contents 10% 64
Fig. 17. Water absorption ratio with EVA contents 67
Fig. 18. Water absorption ratio with PP fiber contents of EVA concrete 69
Fig. 19. Water absorption ratio with steel fiber contents of EVA concrete 70
Fig. 20. Chloride ion penetration resistance with EVA contents 72
Fig. 21. Chloride ion penetration resistance with PP fiber contents of EVA concrete 74
Fig. 22. Chloride ion penetration resistance with steel fiber contents of EVA concrete 74
Fig. 23. Impact resistance test apparatus 79
Fig. 24. Weight reduction ratio with EVA contents in freezing and thawing 300 cycles 83
Fig. 25. Weight reduction ratio with PP fiber contents of EVA concrete in freezing and thawing 300 cycles 84
Fig. 26. Weight reduction ratio with steel fiber contents of EVA concrete in freezing and thawing 300 cycles 85
Fig. 27. Relative dynamic modulus of elasticity with freezing and thawing cycles of EVA contents 87
Fig. 28. Relative dynamic modulus of elasticity with freezing and thawing cycles of PP fiber contents on EVA contents 5.0% 88
Fig. 29. Relative dynamic modulus of elasticity with freezing and thawing cycles of steel fiber contents on EVA contents 5.0% 89
Fig. 30. Durability factor with PP fiber contents of EVA concrete 92
Fig. 31. Durability factor with steel fiber contents of EVA concrete 93
Fig. 32. Abrasion ratio with EVA contents 95
Fig. 33. Abrasion ratio with fiber contents of EVA contents 5.0% 98
Fig. 34. Drop number with EVA contents of final fracture 101
Fig. 35. Relationship between PP fiber contents and drop number 104
Fig. 36. Relationship between steel fiber contents and drop number 105
Fig. 37. Weight reduction ratio with immersed period of EVA contents 110
Fig. 38. X-ray diffraction analysis with EVA contents after curing age 42days 111
Fig. 39. Weight reduction ratio with immersed period of PP fiber contents on EVA contents 10% 112
Fig. 40. Weight reduction ratio with immersed period of steel fiber contents on EVA contents 10% 113
Fig. 41. X-ray diffraction analysis of EVA concrete reinforced fiber after curing age 42days 116
Fig. 42. Scheme of flexural toughness test 119
Fig. 43. Definition of toughness indexes according to ASTM C 1018 120
Fig. 44. Load-deflection curves with PP fiber contents of EVA contents 7.5% 124
Fig. 45. Load-deflection curves with steel fiber contents of EVA contents 2.5% 125
Fig. 46. Flexural toughness index with PP fiber contents of EVA contents 7.5% 128
Fig. 47. Flexural toughness index with steel fiber contents of EVA contents 7.5% 129
Photo 1. Shape of EVA redispersible polymer powder 27
Photo 2. Shape of fly ash 28
Photo 3. Shape of PP and steel fiber 29
Photo 4. Stress-strain test apparatus 35
Photo 5. Test apparatus of dry shrinkage 35
Photo 6. Micro-structure of polymer film in EVA content 10% by SEM 67
Photo 7. Comparison of micro-structure between E0-0 and PE4-1 by SEM 75
Photo 8. Micro-structure with EVA concrete by SEM 91
Photo 9. Specimen appearance with fiber contents of EVA concrete after abrasion test 99
Photo 10. Specimen appearance of EVA concrete reinforced fiber after impact resistance test 106
Photo 11. Surface of EVA concrete reinforced PP fiber immersed in 5% H₂SO₄ solution after curing age 42days 114
Photo 12. Surface of EVA concrete reinforced steel fiber immersed in 5% H₂SO₄ solution after curing age 42days 115
Photo 13. Photo of flexural toughness test 119
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.