본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

목차

제1장 서론 12

제2장 이론 14

2.1. 폴리우레탄 수지의 분류 14

2.1.1. 유변성형 폴리우레탄 14

2.1.2. 습기경화형 폴리우레탄 15

2.1.3. Blocked polyisocyanate 15

2.1.4. 촉매경화형 폴리우레탄 16

2.1.5. 폴리올 경화형 폴리우레탄 17

2.1.6. 이소시아네이트(Isocyanate) 18

2.1.7. 폴리올(Polyol) 20

2.2. 도료의 역할 22

2.2.1. 도료와 용제의 역할 24

2.2.2. 용제의 구분 26

2.2.3. 용제가 도막에 미치는 영향 28

2.3. 불소계 기능재료의 개요 29

2.4. 표면의 화학 및 물리적 특성과 접촉각 31

2.5. 코팅방법 34

2.5.1. Dip coating법 34

2.5.2. Spin coating법 35

2.5.3. Roller coating법 37

2.5.4. Spray coating법 38

2.5.5. Flow coating법 39

2.5.6. 기상 coating법 41

제3장 Isophorone diisocyanate를 이용한 발수·발유 폴리우레탄 코팅용액 제조 45

3.1. 실험 45

3.1.1. 시약 및 재료 48

3.1.2. 합성방법 50

3.1.3. 코팅막의 경화방법 53

3.2. 시료분석 54

3.2.1. FT-IR 54

3.2.2. 투과율 54

3.2.3. 고형물 함유량 54

3.2.4. 접촉각 측정 54

3.2.5. 연필경도 55

3.2.6. 부착력 55

3.3. 결과 및 고찰 56

3.3.1. 화학적 구조분석 56

3.3.2. 코팅도막의 투과율 분석 58

3.3.3. 코팅 막의 접촉각 59

3.3.4. 코팅 막의 연필경도, 부착력 및 고형분 62

제4장 IPDI 발수·발유 폴리우레탄 코팅용액 제조시 PFA첨가량 변화가 코팅 막의 물성에 미치는 영향 63

4.1. 실험 63

4.2. 시료분석 64

4.2.1. FT-IR 64

4.2.2. 투과율 64

4.2.3. 고형물 함량 64

4.2.4. 접촉각 측정 64

4.2.5. 연필경도 65

4.2.6. 부착력 65

4.3. 결과 및 고찰 66

4.3.1. 화학적 구조분석 66

4.3.2. 코팅도막의 투과율 분석 68

4.3.3. 코팅 막의 접촉각 69

4.3.4. 코팅 막의 연필경도, 부착력 및 고형분 70

제5장 Toluene diisocyanate첨가량이 폴리우레탄의 물성에 미치는 영향 72

5.1. 실험 72

5.1.1. 시약 및 재료 74

5.1.2. 합성방법 76

5.2. 시료분석 77

5.2.1. FT-IR 77

5.2.2. 투과율 77

5.2.3. 접촉각 측정 77

5.2.4. 연필경도 77

5.2.5. 부착력 78

5.3. 결과 및 고찰 79

5.3.1. 화학적 구조분석 79

5.3.2. 코팅 도막의 투과율 측정 82

5.3.3. 코팅 막의 접촉각 83

5.3.4. 코팅 막의 연필경도 및 부착력 86

제6장 TDI 발수·발유 폴리우레탄 코팅용액 제조시 PFA첨가량 변화가 코팅 도막의 물성에 미치는 영향 87

6.1. 실험 87

6.1.1. 시약 및 재료 89

6.1.2. 합성방법 91

6.2. 시료분석 93

6.2.1. FT-IR 93

6.2.2. 투과율 93

6.2.3. 접촉각 측정 93

6.2.4. 연필경도 94

6.2.5. 부착력 94

6.2.6. 금속현미경 94

6.3. 결과 및 고찰 95

6.3.1. 화학적 구조분석 95

6.3.2. 코팅도막의 투과율 분석 97

6.3.3. 코팅 막의 접촉각 98

6.3.4. 연필경도와 부착력 104

6.3.5. 코팅 도막의 표면 상태 105

제7장 결론 106

참고문헌 114

Abstract 118

Table. 2-1. Different types of diisocyanates 19

Table. 2-2. Comparison characteristics of polyester with polyether 20

Table. 2-3. Different types of polyols in synthesis of polyurethane 21

Table. 2-4. 주요 도료용 용제와 그 성상 27

Table. 2-5. 도막의 결함 현상 및 그 원인 28

Table. 2-6. Critical surface free energy(γc) depending on the surface... 30

Table. 3-1. Structures and molecular weights of chemicals used in... 49

Table. 3-2. Recipe for the preparation of water-oil repellent... 52

Table. 3-3. Water repellent polyurethane coating film properties... 62

Table. 4-1. Recipe for the preparation of water-oil repellent... 63

Table. 4-2. Water repellent polyurethane coating film properties on... 71

Table. 5-1. Structures and molecular weights of chemicals used in... 75

Table. 5-2. Recipe for the preparation of polyurethane dispersion 76

Table. 5-3. properties of coated films on poly carbonate 86

Table. 6-1. Structures and molecular weights of chemicals used in... 90

Table. 6-2. Recipe for the preparation of water-repellent,... 92

Table. 6-3. properties of coated films on poly carbonate 104

Fig. 2-1. Alkyd polyurethane resin reaction 14

Fig. 2-2. Difference between the state of the resin role 22

Fig. 2-3. Water-Repellent effect of perfluoroalkyl chemical agents 29

Fig. 2-4. Contact angle and surface free energy 32

Fig. 2-5. Surface free energy and contact angles of various... 33

Fig. 2-6. Stages of the dip coating process 34

Fig. 2-7. Stages of the spin coating process 36

Fig. 2-8. Stages of the roller coating process 37

Fig. 2-9. Stages of the spray coating process 38

Fig. 2-10. Stages of the flow coating process 39

Fig. 2-11. Stages of the curtain coating process 40

Fig. 2-12. Stages of the vacuum plating process 41

Fig. 2-13. Stages of the sputtering process 42

Fig. 2-14. Stages of the ion plating process 43

Fig. 2-15. Stages of the chemical vapor deposition process 44

Fig. 3-1. Overall reaction scheme to prepare water-oil repellent... 47

Fig. 3-2. Perfluoroalkyl ethanol 48

Fig. 3-3. Apparatus for the synthesis of water-oil repellent... 51

Fig. 3-4. Heat curing the coating film graph 53

Fig. 3-5. Photos of the polyurethane-based water-oilrepellent agent... 56

Fig. 3-6. FT-IR spectra data of the synthesis of polyurethane-based... 57

Fig. 3-7. UV-Visible transmission spectra of the coated films on... 58

Fig. 3-8. Water-oil repellent polyurethane coating of water... 59

Fig. 3-9. Water-repellent oil-repellent polyurethane coating water... 60

Fig. 3-10. Water-oil repellent polyurethane coating of oil contact... 61

Fig. 3-11. Water-repellent oil-repellent polyurethane coating oil... 61

Fig. 4-1. Photos of the polyurethane-based water-oil repellent agent... 66

Fig. 4-2. FT-IR spectra data of the synthesis of polyurethane-base... 67

Fig. 4-3. UV-Visible transmission spectra of the coated films on... 68

Fig. 4-4. Water-oil repellent polyurethane coating of water contact... 69

Fig. 4-5. Water-repellent oil-repellent polyurethane coating oil... 70

Fig. 5-1. Overall reaction scheme to prepare polyurethane... 73

Fig. 5-2. Photos of the polyurethane-based water-oilrepellent... 79

Fig. 5-3. Water-oil repellent spectral peaks of the polyurethane... 81

Fig. 5-4. UV-Visible transmission spectra of the coated films on... 82

Fig. 5-5. Water-oil repellent polyurethane coating of water contact... 84

Fig. 5-6. Water-oil repellent polyurethane coating of water contact... 85

Fig. 6-1. Overall reaction scheme to prepare water-oil repellent... 88

Fig. 6-2. Photos of the polyurethane-based water-oilrepellent... 95

Fig. 6-3. FT-IR spectra data of the synthesis of polyurethane-base... 96

Fig. 6-4. UV-Visible transmission spectra of the coated films on... 97

Fig. 6-5. Water-oil repellent polyurethane coating of water contact... 99

Fig. 6-6. Water-repellent oil-repellent polyurethane coating oil... 100

Fig. 6-7. Water-oil repellent polyurethane coating of oil contact... 102

Fig. 6-8. Water-repellent oil-repellent polyurethane coating oil... 103

Fig. 6-9. Water-oil repellent polyurethane coating film surface... 105

초록보기

Fluorinated polyurethane coating solutions were synthesized from perfluoroalkyl alcohol, toluene diisocyanate, and polycarbonate diol as starting materials. And the coating films were prepared by spin-coating the fluorinated polyurethane coating solutions on the PC substrates, followed by thermal curing at 120℃. The obtained fluorinated polyurethane coating films were characterized by FT-IR spectroscopy, UV-Vis spectrometer, contact angle tester and pencil hardness tester. Contact angle measurements of water on the coating films showed that the addition of perfluoroalkyl alcohol improved the water repellency and increased the contact angle from 81° to 111°. However, the pencil hardness of coating films exhibited a constant grade of H, irrespective of the addition of perfluoroalkyl alcohol.