본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

초록

Abstract

Contents

Chapter 1. Introduction 12

1.1. Bioplastics 12

1.2. Poly(ethylene terephthalate) (PET) 13

1.3. Furan-2,5-dicarboxylic acid (FDCA) 14

1.4. Furan-based polyester 17

1.5. Solid-state Polymerization (SSP) of polyester 19

1.5.1. Crystallization for SSP 20

1.5.2. Crystal annealing 22

Chapter 2. Synthesis and Characterization of Furan based copolyesters containing cyclohexane 24

2.1. Introduction 24

2.2. Experimental 25

2.2.1. Materials 25

2.2.2. Synthesis of co-polyesters 26

2.2.3. Analysis 27

2.3. Results and discussion 29

2.3.1. Syntheses 29

2.3.2. Characterizations 31

2.4. Conclusion 47

Chapter 3. Crystallization behavior and Solid-state Polymerization of Furan based copolyesters containing cyclohexane 48

3.1. Introduction 48

3.2. Experimental 50

3.2.1. Solid state polymerization 50

3.2.2. Analysis 51

3.3. Results and discussion 52

3.3.1. Crystallization for SSP 52

3.3.2. Solid-state polymerizations (SSP) 60

3.3.3. Characteristic of EC75 for the preparation of beverage packaging 65

3.4. Conclusion 70

Reference 71

Curriculum Vitae 76

List of Tables

Table 1.1. Differences between FDCA and TPA 16

Table 1.2. Gas barrier properties of PEF 17

Table 1.3. Thermal properties of PEF 18

Table 2.1. Mechanical properties of PEF 24

Table 2.2. Composition and characteristic of furan based co-polyesters 30

Table 2.3. Molar percentage of CHDM in co-polyester chain 32

Table 2.4. Thermal transition parameters of furan based co-polyesters 35

Table 2.5. Decomposition temperatures at 5% weight loss (Td,5%) and maximum rate 37

Table 2.6. Summarized results of mechanical properties 41

Table 2.7. Summarized results of dynamic mechanical thermal analysis 46

Table 3.1. Characteristics of injection molding 50

Table 3.2. Crystallinity of furan based co-polyesters after annealing at 190℃ during... 60

Table 3.3. Characteristics of solid-state polymerization 61

Table 3.4. L, lc and la values of furan based co-polyesters after annealing at 190℃... 65

Table 3.5. Permeability and fractional free volume (FFV) of furan-based co-polyesters 67

List of Figures

Figure 1.1. The carbon dioxide cycle of fossil fuel-plastic and bio-plastic 12

Figure 1.2. Preparation and chemical structure of PET 13

Figure 1.3. Preparation of FDCA 15

Figure 1.4. Synthesis of Poly(ethylene 2,5-furanoate)(PEF) 17

Figure 1.5. Illustration of a spherulite growing into a melt 21

Figure 1.6. Schematic of a PET-SSP process, showing typical DSC thermograms... 23

Figure 2.1. Step-growth polycondensation of furan-based co-polyesters via melt... 27

Figure 2.2. ¹H NMR spectra of furan-based co-polyesters 32

Figure 2.3. DSC thermograms of furan-based co-polyesters 34

Figure 2.4. Thermogravimetric analysis of furan based co-polyesters 37

Figure 2.5. Tensile properties of furan-based co-polyesters 40

Figure 2.6. Fracture surface of furan based co-polyesters 43

Figure 2.7. Dynamic mechanical thermal analysis of furan based co-polyesters 45

Figure 3.1. Isothermal crystallization behaviors of furan-based co-polyesters... 53

Figure 3.2. Crystallization half-time of furan-based co-polyesters 54

Figure 3.3. Polarized optical microscopy (POM) images of furan-based co-polyesters 55

Figure 3.4. DSC thermograms of furan-based co-polyesters: annealed at various times... 57

Figure 3.5. Changes in △Hm of furan-based co-polyesters at various annealing times... 58

Figure 3.6. WAXS patterns of furan-based co-polyesters after annealing at 190℃... 59

Figure 3.7. Development of (a) IV vs. time (b) COOH vs. time during SSP 62

Figure 3.8. SAXS patterns of furan-based copolyesters after annealing at 190 ℃... 64

Figure 3.9. Morphological effects of lamellar stacks during an SSP reaction. 64

Figure 3.10. O₂ barrier properties of EC75 66

Figure 3.11. Thermal degradation of EC75 69

초록보기

최근 지구 온난화의 주원인인 이산화탄소 저감과 재생 자원인 식물을 원료로 활용 가능하다는 측면에서 바이오 플라스틱의 필요성이 부각되고 있어 전세계적으로 많은 연구가 진행되고 있다. 본 논문에서는 식음료 포장용기로 활용 가능한 bio fliran 기반 신규 polyester 를 합성하고 특성화하였고 고분자량화를 위한 결정화거동에 대해 연구하였다. 제 2장에서 furan계 polyester의 단점인 낮은 신율과 느린 결정화 속도를 개선하기 위해 Furan-2,5-dicarboxylic acid (FDCA)와 Ethylene glycol (EG), l,4-Cyclohexanedimethanol (CHDM)으로 이루어진 공중합체를 용융축중합 방법을 통해 성공적으로 합성하였고 그 구조와 물성을 규명하였다. FDCA와 EG로 이루어진 고분자 주사슬에 CHDM이 도입됨에 따라 사슬 움직임의 증가로 인장신율 뿐만 아니라 충격강도가 크게 증가하였다. 합성된 furan계 co-polyester를 bottle로 가공 하기 위해서는 고분자량화가 필요하다. 제3장에서는 합성된 furan계 co-polyester를 고분자량화 하기 위한 고상중합과 결정화 거동에 대해 연구하였다. 합성된 furan계 co-polyester를 고상중합한 후에 Intrinsic viscosity는 1.0 dl/g 이상으로 bottle로 가공할 수 있었다. furan계 co-polyester의 bottle은 Poly(ethylene terephthalate)(PET) bottle보다 우수한 기체차단성과 낮은 아세트알데하이드 함량을 보임으로써 식음료 용기로 적합하다는 결과를 얻었다.