권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Title Page
Contents
Abbreviation 13
Abstract 15
CHAPTER I. INTRODUCTION 17
1.1. Research background 17
1.2. Research trend 19
1.3. Research content and scope 27
CHAPTER II. RELATED THEORIES AND SUBWAY SYSTEM 29
2.1. Characteristic of particulate matters 29
2.1.1. Characteristics of particulate matter 29
2.1.2. Sources of particulate matter 34
2.1.3. Definition of particle diameter 35
2.1.4. Mass and Number concentration 37
2.2. Health effects of particulate matter 39
2.3. Vehicle dynamics and blending brake system 41
2.3.1. Definition of urban railway 41
2.3.2. Hunting oscillation on railway wheelsets 43
2.3.3. Wheel-rail interface 44
2.3.4. Brake system 48
2.4. Wear mechanism in subway 51
2.5. Measurement & Analysis device 56
2.5.1. Measurement device and principle 56
2.5.2. Analysis device and principle 58
CHAPTER III. SOURCE AND CHARACTERISTICS OF PARTICULATE MATTERS IN SUBWAY TUNNEL 68
3.1. Research outline 68
3.1.1. Study area 68
3.1.2. Collection and analysis of samples 70
3.2. Result and discussion 75
3.2.1. PM mass 75
3.2.2. Chemical composition of PM 78
3.2.3. Morphology and energy-dispersive spectroscopy (EDX) 84
3.3. Summary 92
CHAPTER IV. GENERATION OF AIRBORNE WEAR PARTICLE EMITTED FROM SUBWAY IN OPERATION 93
4.1. Research Method 93
4.1.1. Measurement Subjects & Methodologies 93
4.1.2. Information Regarding the Operation of Daegu Metro and the Automatic Train Control System 95
4.2. Result and discussion 99
4.2.1. Mass and Number concentration of airborne wear particles in operation subway 99
4.2.2. Emission of wear particles under cabin in subway operation 120
4.2.3. Generation characteristics of airborne wear particles in operation subway 123
4.3. Summary 128
CHAPTER V. CONCLUSION AND FUTURE WORK 132
References 135
국문초록 150
Figure 1.1. Sources of particulate matter in subway tunnel. 18
Figure 1.2. Sources contribution of particulate matter in subway tunnel by Positive Matrix... 20
Figure 1.3. Comparison of fine and coarse particle concentration at M station. 20
Figure 1.4. Generation mechanism of airborne nanoparticles from braking friction. 21
Figure 1.5. Airborne wear particle number concentration measured using the fast... 22
Figure 1.6. Flow chart of the present study 28
Figure 2.1. The scale of ultrafine particles (http://now.tufts.edu/articles/big-road-blues-pollution-... 29
Figure 2.2. Typical example of number weighted size distributions in a street canyon ; also... 30
Figure 2.3. Classification of typical types of particles present in our environment and their... 34
Figure 2.4. Feret and Martin diameter. 36
Figure 2.5. Equivalent, Stokes and Aerodynamic diameter. 37
Figure 2.6. Mass and Number concentration in urban aerosol 38
Figure 2.7. Penetration to human lung by size distribution of particulate matter. 39
Figure 2.8. Bogie components and wheelset. 42
Figure 2.9. A Schematic view of six possible relative motions in a carbody or a rail vehicle. 43
Figure 2.10. Kinematics of railway wheel coning action. 44
Figure 2.11. Leading wheelset entering a right-hand curve. 45
Figure 2.12. Wheel-rail contact zones. 46
Figure 2.13. Wheel rail contact. 46
Figure 2.14. Relationship between traction and creep in the wheel-rail contact. 48
Figure 2.15. Disc and Tread braking. 49
Figure 2.16. Characteristic curves of brake blending. 50
Figure 2.17. Abrasive wear mechanisms: a fine plowings; b fine cuttings; c fine cracks; d... 51
Figure 2.18. Adhesive wear mechanism and particles created from adhesive wear. 53
Figure 2.19. Tribochemical wear mechanism. 54
Figure 2.20. Formation and propagation of cracks in the surface fatigue mechanism. 55
Figure 2.21. Schematic of electrical low pressure impactor. 57
Figure 2.22. Schematic of scanning electron microscopy. 61
Figure 2.23. Mechanisms of emission of secondary electrons, backscattered electrons, and... 63
Figure 2.24. Principle of energy-dispersive x-ray spectroscopy. 65
Figure 2.25. Schematic of imaging and diffraction modes in transmission electron microscopy. 66
Figure 2.26. Principle of X-ray diffraction. 67
Figure 3.1. The natural and mechanical ventilation systems in line no. 4. 68
Figure 3.2. Number of trains at the M station and S station on weekdays. 69
Figure 3.3. Positions of the sampling sites at the M and S stations. 69
Figure 3.4. Particulate matter (PM) mass concentration in the subway tunnel at the M station. 76
Figure 3.5. The number and volume of PM in the subway tunnel at the M station between 7:00... 77
Figure 3.6. Size distribution of PM in the subway tunnel at the M station between 7:00. and 8:00... 78
Figure 3.7. Mass concentrations of the carbonaceous components of PM in the subway tunnel at... 79
Figure 3.8. X-ray diffraction (XRD) patterns of PM in the subway tunnel at the S station. 81
Figure 3.9. Normal and mass concentrations of ionic components in PM at the M station (n =... 82
Figure 3.10. Mass concentrations of inorganic components in PM at the M station. 83
Figure 3.11. Morphology of PM in subway tunnels according to size at the M station. 87
Figure 3.12. Elemental map of PM2.5. at the M station.(이미지참조) 88
Figure 3.13. Morphology of in subway tunnels according to size at the S station. 91
Figure 4.1. Map showing the subway line and subway vehicle in Daegu (TC: Train Controller-Car, M:... 94
Figure 4.2. Side view of the sampling points. 94
Figure 4.3. Operation information of the subway train at specific measurement times. 97
Figure 4.4. Operation information of the subway train in each section. 98
Figure 4.5. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail (Down) under M-car(이미지참조) 100
Figure 4.6. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail (Down) under M-car(이미지참조) 101
Figure 4.7. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail (Down) under M-car(이미지참조) 102
Figure 4.8. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail (Down) under M-car(이미지참조) 103
Figure 4.9. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail(Down) under M-car(이미지참조) 104
Figure 4.10. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail (Down) under TC-car(이미지참조) 106
Figure 4.11. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail (Down) under TC-car(이미지참조) 107
Figure 4.12. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail (Down) under TC-car(이미지참조) 108
Figure 4.13. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail (Down) under TC-car(이미지참조) 109
Figure 4.14. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and wheel-rail (Down) under TC-car(이미지참조) 110
Figure 4.15. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and brake pad-disc (Down) under...(이미지참조) 111
Figure 4.16. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and brake pad-disc (Down) under...(이미지참조) 112
Figure 4.17. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of tunnel and brake pad-disc (Down) under...(이미지참조) 113
Figure 4.18. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of both of wheels (Down) under M-car(이미지참조) 115
Figure 4.19. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of both of wheels (Down) under M-car(이미지참조) 116
Figure 4.20. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of both of wheels (Down) under M-car (Univ....(이미지참조) 117
Figure 4.21. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of both of wheels (Down) under M-car(이미지참조) 118
Figure 4.22. The concentration of PM10, 2.5. and PN0.1. (Up) and mass rate and number difference of both of wheels (Down) under M-car(이미지참조) 119
Figure 4.23. The average concentration of airborne wear particles under cabin in subway... 120
Figure 4.24. Regression result of PM10 and PN0.1. emitted at wheel-rail contact under M-car.(이미지참조) 121
Figure 4.25. Regression result of PM2.5. and PN0.1. emitted at wheel-rail contact under M-car.(이미지참조) 122
Figure 4.26. The concentration of PM10 and 2.5. and PN0.1. emitted from wheel-rail contact...(이미지참조) 123
Figure 4.27. Size distribution of mass and number emitted from wheel-rail contact under M-car... 124
Figure 4.28. Size distribution of mass and number concentration emitted from wheel-rail... 125
Figure 4.29. Contour plot of mass and number concentration emitted from wheel-rail contact... 126
Figure 4.30. The normalized concentration of mass (7.3-10, 2.0-3.0. ㎛) and number (10-20 nm, 0.2-0.19. ㎛) emitted from wheel-rail... 127
Figure 4.31. Generation mechanism of airborne wear particles in subway tunnel. 130
세계 대도시에서 지하철은 교통난을 해결하기 위한 주요한 대중교통수단으로써 지속적으로 확장 및 증설이 이뤄지고 있다. 하지만 지하철은 구조적 특성 상 밀폐되어 있으며, 내부에서 생성되거나 외부에서 유입된 미세먼지 등의 오염물질이 쉽게 누적되어 이를 이용하는 승객 및 작업자에게 지속적으로 노출되고 있다. 또한 각 역사마다 승객용 스크린 도어의 설치는 역사의 미세먼지를 감소하는 효과를 가져왔으나, 지하철 터널의 공기질은 점차 악화되어 지하역사보다 PM10의 농도가 2배 이상 높은 수준을 보이는 것으로 나타났다. 최근에 WHO는 초미세먼지를 1급 발암물질로 규정하였으며, 같은 성분의 미세먼지라도 입자의 크기가 작을수록 폐 깊숙이 침투하여 질병을 일으킨다는 연구가 보고되었다. 특히 도시철도 터널 내 미세먼지는 철 성분에 의한 산화 환원 반응으로 인해, 나무, 타이어 및 도로비산먼지 보다 인체에 유해하다고 보고되었다. 그리고 입자 사이즈가 작을수록 독성이 증가하며, 인간의 뇌에서 나노크기의 적철석이 발견되었다. 이와 같이, 도시철도 터널 내 미세먼지를 저감해야 할 필요가 있으며, 본 연구에서는 도시철도 터널 내 미세먼지의 오염원 파악을 위해 미세먼지의 입경별 물리화학적 특성을 연구하였고, 터널 내 대다수를 차지하는 마모입자의 발생원인을 파악하기 위해 전동차 운행 시 생성되는 마모입자의 발생 특성을 연구하였다. 그리고 이를 통해 저감 대책 및 방안을 수립하였다. 도시철도 터널 내 미세먼지의 주요 구성 성분은 산화철이며, 수 나노의 클러스터들이 뭉쳐 있거나, 조대입자에 부착되어 있었다. 이러한 나노 크기를 포함한 미세먼지들은 대부분이 전동차 중 동력차 하부의 휠-레일 접촉면에서 생성된 입자이며, 회생제동으로 발생한 슬립에 의해 생성되었다. 또한 동력차 하부 휠 플렌지-레일 가드 간 접촉에 의해서도 발생하였다. 운전차 하부의 브레이크 패드 및 디스크에서는 소량 발생하였으며, 휠-레일 접촉면에서는 거의 발생하지 않았다.
이와 같이 전동차 하부에서 발생하는 마모입자를 저감하기 위한 방안으로는 윤활유의 적절한 활용, 능동조향대차 개발을 통한 휠 플렌지 및 레일 가드 간 접촉 방지, 부수차와 운전차에 회생제동 시스템 적용 및 내마모성이 뛰어난 신소재를 휠과 레일에 적용한다면 미세먼지의 발생을 저감할 수 있으며, 동력차 하부 휠-레일 접촉면의 국소 집진장치를 개발, 적용한다면, 도시철도 터널 미세먼지를 획기적으로 줄일 수 있을 것이다.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.