권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Title Page
Contents
1. INTRODUCTION 13
1.1. Protein Glycosylation 13
1.1.1. Post-translational Modifications (PTMs) of Proteins 13
1.1.2. Glycosylation in PTMs 14
1.2. Mass Spectrometry in Glycomics 18
1.2.1. The Correlation of Altered Glycans with Diseases 18
1.2.2. Relative Quantification Techniques in Glycomics 19
1.3. Research Objectives 22
2. EXPERIMENTAL 25
2.1. Materials 25
2.2. Yeast Culture and Harvest 25
2.3. Extraction of Proteins in Yeast 26
2.4. Release of Glycans from Glycoproteins in Yeast 26
2.4.1. Enzymatic Release of N-linked Glycans 26
2.4.2. Chemical Release of O-linked Glycans 27
2.5. Permethylation of Glycans 28
2.6. Analysis of Glycans by Mass Spectrometry 28
2.7. Data Analysis 29
3. RESULTS AND DISCUSSION 31
3.1. 1-¹³C₁ Incorporation into N-linked Glycans and O-linked Glycans by MILPIG 31
3.2. Optimization of Culture Conditions for Relative Quantification of Glycans 38
3.2.1. Culture Condition under Incubation Time 38
3.2.2. Culture Condition under Glucose Concentration 44
3.3. Relative Quantification of Glycans in Yeast 48
3.3.1. Relative Quantification of N-linked Glycans 48
3.3.2. Relative Quantification of O-linked Glycans 53
3.3.3. Relative Quantification of N-linked Glycans from Control and Tunicamycin-treated Condition in Yeast by MILPIG 58
4. CONCLUOSION 63
LITERATURE CITED 65
ABSTRACT 73
국문초록(요약) 74
Figure 1. The secretory pathway for glycosylation. 16
Figure 2. Glycans are generally classified with N-linked glycans and O-linked glycans. (a) N-linked glycans are attached to asparagine (Asn) residues of... 17
Figure 3. A schematic diagram of the MILPIG metabolic labeling strategy for relative quantification of glycans in yeast. 24
Figure 4. Metabolic isotope labeling of polysaccharides with isotopic glucose (MILPIG) strategy. (a) Metabolic isotope labeling through the hexosamine... 30
Figure 5. Full mass spectra of N-linked glycans in yeast. (a) Spectrum of light (¹²C) labeled N-linked glycans and (b) Spectrum of heavy (¹³C₁) labeled N-linked... 34
Figure 6. Full mass spectra of O-linked glycans in yeast. (a) Spectrum of light (¹²C) labeled O-linked glycans and (b) Spectrum of heavy (¹³C₁) labeled O-linked... 35
Figure 7. MS/MS spectra of light and heavy labeled N-linked glycans in yeast. Representatively, MS/MS fragmentation spectrum of Man9GlcNAc2 is displayed.... 36
Figure 8. MS/MS spectra of light and heavy labeled O-linked glycans in yeast. Representatively, MS/MS fragmentation spectrum of Man5 is displayed. (a)... 37
Figure 9. Isotope cluster distribution of heavy labeled N-linked glycans by incubation time. The mass spectra under incubation time of (a) 2 days, (b) 3 days, (c) 4 days, (d) 6 days, (e) 6 days with addition 1 mL (1 ㎎/mL glucose conc.) of cult... 40
Figure 10. Isotope cluster distribution of heavy labeled O-linked glycans by incubation time. The mass spectra under incubation time of (a) 2 days, (b) 3 days, (c) 4 days, (d) 6 days, (e) 6 days with addition 1 mL (1 ㎎/mL glucose conc.) of cult... 42
Figure 11. Isotope cluster distribution of heavy labeled N-linked glycans by glucose concentration. The mass spectra under glucose concentration of (a) 1 ㎎/mL, (b) 2.5 ㎎/mL, and (c) 5 ㎎/mL. *: isotope-labeled mass. 46
Figure 12. Isotope cluster distribution of heavy labeled O-linked glycans by glucose concentration. The mass spectra under glucose concentration of (a) 1 ㎎/mL, (b) 2.5 ㎎/mL, and (c) 5 ㎎/mL. *: isotope-labeled mass. 47
Figure 13. Full mass spectrum from 1:1 mixture of light (¹²C) labeled and heavy (¹³C₁) labeled N-linked glycans in yeast. The relative quantification of N-linked... 50
Figure 14. The calibration curves at the five ratios between light (¹²C) and heavy (¹³C₁) labeled N-linked glycans. The linearity plot of (a) Man11GlcNAc2 and (b)... 52
Figure 15. Full mass spectrum from 1:1 mixture of light (¹²C) labeled and heavy (¹³C₁) labeled O-linked glycans in yeast. The relative quantification of O-linked... 55
Figure 16. The calibration curves at the five ratios between light (¹²C) and heavy (¹³C₁) labeled O-linked glycans. The linearity plot of (a) Man4 and (b) Man5.... 57
Figure 17. Full mass spectrum from 1:1 mixture of tunicamycin-treated (¹³C₁) and normal control (¹²C) N-linked glycans in yeast. The relative quantification... 60
Figure 18. Relative quantitation of N-linked glycans in yeast between a ratio of tunicamycin-¹³C₁ and control-¹²C. Ratios (tunicamycin-treated/control) are... 62
단백질에 탄수화물을 결합시키는 글라이코실화는 단백질의 일반적이면서도 중요한 번역 후 변형 중 하나이다. 글라이코실화를 통하여 생성된 당단백질은 다양한 생물학적인 기능을 가진다. 이 때 당단백질의 생리학적인 기능을 야기하고 당단백질의 발현변화를 유도하는, 단백질의 탄수화물 부분인 글라이캔(glycans)들의 발현변화가 생기면 여러 질병들이 유발된다. 따라서, 세포 상태에 따라 다양하게 변화된 글라이캔의 상대적 분석을 위하여 질량 분석법을 기반으로 한 상대 정량 분석기술들이 개발되었다.
본 연구에서는 효모(Saccharomyces cerevisiae)의 글라이캔들을 분석하기 위하여 글라이코믹스(glycomcis)의 생체 내 상대 정량 분석 기술 중 하나 인 동위 원소 글루코오스를 이용하여 다당류를 대사동위원표지하는 방법인 MILPIG기술을 적용시켰다. 그 결과, 효모의 글라이캔으로 1-¹³C₁이 성공적으로 혼입되는것을 하고 정확한 정량 분석을 위해 ¹³C₁으로 표지 된 N-글라이캔과 O-글라이캔의 넓게 퍼진 동위원소 클러스터의 분포를 줄이기 위하여 배양 시간과 글루코오스 농도를 최적화했다. 질량 분석법에 의해 최적의 조건하에 효모의 글라이캔들을 정확하게 정량분석 하고 또한 MILPIG를 사용하여 정상 대조군과 N-글리코 실화 억제제 인 투니카마이신(tunicamycin)을 처리 한 효모의 엔글라이캔들의 차이를 상대 정량 하여 생물학적 샘플(예를 들어 질병세포와 같은)에서의 이 기술의 실용성을 연구했다. 결론적으로, 우리는 MILPIG가 다양한 세포에서 글라이캔들의 상대 정량 분석을 위하여 적용 가능함을 입증하고, MILPIG가 질병에서 글라이캔들의 변화를 분석하기 위해 적용될 수 있음을 입증한다.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.