본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

목차

초록 20

1. Introduction 21

1. Anticancer Therapy 21

2. Molecular Hybridization 25

3. Conventional Drugs 27

3-1) Anticancer drugs 27

3-2) Other disease drugs 34

II. Research Objectives and Results 37

1. Drug Discovery 37

2. Design & Molecular Construction 39

2-1) Synthesis of hybrid compounds A-F derived from Omeprazole intermediate(이미지참조) 39

2-2) Synthesis of hybrid compounds G-L derived from Quinolone intermediate(이미지참조) 46

2-3) Synthesis of hybrid compounds M-R derived from Sorafenib intermediate(이미지참조) 54

2-4) Synthesis of hybrid compounds S-X derived from Dasatinib & Erlotinib intermediate(이미지참조) 61

2-5) Biological Assay 68

3. Diaryl Urea Derivatives 74

3-1) Diaryl urea inhibitor 74

3-2) Design and synthesis of compounds N & Q derivatives(이미지참조) 76

3-3) Biological Assay 83

4. Biological Evaluation of Compound N-3(이미지참조) 85

4-1) Apoptosis 87

4-2) Materials and methods 89

4-3) Biological evaluation 95

III. Experimental Section 109

1. Chemistry 109

2. General Procedures 115

2-1) General procedures for preparation of conventional drug intermediates 115

2-2) General procedures for preparation of hybrid compounds A-X(이미지참조) 141

IV. Conclusion 197

V. Reference 199

VI. Appendix 207

Abstract 287

표목차

[Table 1.] 화합물 A~F에 대한 SRB(sulforhodaime B) assay 측정결과(이미지참조) 68

[Table 2.] 화합물 G~L에 대한 SRB(sulforhodaime B) assay 측정결과(이미지참조) 69

[Table 3.] 화합물 M~R에 대한 SRB(sulforhodaime B) assay 측정결과(이미지참조) 70

[Table 4.] 화합물 S~X에 대한 SRB(sulforhodaime B) assay 측정결과(이미지참조) 71

[Table 5.] 화합물 N 유도체 합성 결과(이미지참조) 80

[Table 6.] 화합물 Q 유도체 합성 결과(이미지참조) 82

[Table 7.] 화합물 N 유도체에 대한 SRB(sulforhodaime B) assay 측정결과(이미지참조) 83

[Table 8.] 화합물 Q 유도체에 대한 SRB(sulforhodaime B) assay 측정결과(이미지참조) 83

[Table 9.] 실험에 사용한 사람 암 세포주 종류 89

그림목차

[Fig. 1.] Characteristic of cancer cells 21

[Fig. 2.] Classification of anti-cancer drugs 22

[Fig. 3.] History of therapy for anticancer drugs 23

[Fig. 4.] FDA-approved PKI drugs 24

[Fig. 5.] Proposal of chemical evolution by combination of different... 26

[Fig. 6.] Mechanism of action for Imatinib 27

[Fig. 7.] Mechanism of action for Sorafenib 28

[Fig. 8.] Mechanism of action for Nilotinib 29

[Fig. 9.] HER2-targeted therapies 30

[Fig. 10.] Mechanism of action for Dasatinib 31

[Fig. 11.] Mechanism of action for Erlotinib 32

[Fig. 12.] Mechanism of action for Decitabine 33

[Fig. 13.] A systemic diagram for developing of new drugs 37

[Fig. 14.] Mechanism of action for Omeprazole 39

[Fig. 15.] Molecular hybridization for synthesis of hybrid... 40

[Fig. 16.] Typical antibiotic drugs of fluoroquinolone 46

[Fig. 17.] Molecular hybridization for synthesis of hybrid... 48

[Fig. 18.] Ribbons diagram of B-RAF kinase domain in complex... 54

[Fig. 19.] Molecular hybridization for synthesis of hybrid... 56

[Fig. 20.] The generation mechanism of the Philadelphia chromosome 61

[Fig. 21.] Mechanism of action for Dasatinib 62

[Fig. 22.] Bcr-Abl binding with Imatinib, Dasatinib and Nilotinib 63

[Fig. 23.] Mechanism of action for Erlotinib 63

[Fig. 24.] Molecular hybridization for synthesis of hybrid... 64

[Fig. 25.] Hybrid compounds harboring diaryl urea scaffold (M, N, O, Q...(이미지참조) 72

[Fig. 26.] Hybrid compound W derived from Nilotinib and Dasatinib(이미지참조) 73

[Fig. 27.] Anticancer drugs harboring diaryl urea scaffold 75

[Fig. 28.] Crystal structure of Sorafenib bound to B-RAF kinase 76

[Fig. 29.] Structure of Sorafenib 77

[Fig. 30.] Design of compound N and compound Q(이미지참조) 77

[Fig. 31.] Synthetic plan of compound N derivatives(이미지참조) 79

[Fig. 32.] Synthetic plan of compound Q derivatives(이미지참조) 81

[Fig. 33.] Type of cell death 85

[Fig. 34.] Intrinsic/Extrinsic pathway of apoptosis 88

[Fig. 35.] Effect of compound N-3 on the viability of MCF-7,...(이미지참조) 96

[Fig. 36.] Effect of compound N-3 on apoptosis in MCF-7,...(이미지참조) 98

[Fig. 37.] Effect of compound N-3 on the levels of Bel-2 family...(이미지참조) 99

[Fig. 38.] Effect of compound N-3 on apoptosis in MCF-7,...(이미지참조) 100

[Fig. 39.] Effect of a caspase inhibitor (z-VAD-fmk) on cell death... 101

[Fig. 40.] Mechanism of action for apotosis 102

[Fig. 41.] Effect of compound N-3 on the PARP cleavage in...(이미지참조) 103

[Fig. 42.] Effect of compound N-3 on the levels of cell cycle...(이미지참조) 104

[Fig. 43.] ¹H-NMR spectrum of Imatinib intermediate 3(이미지참조) 208

[Fig. 44.] ¹H-NMR spectrum of Poziotinib intermediate 7(이미지참조) 208

[Fig. 45.] ¹H-NMR of spectrum Ticagrelor intermediate 11(이미지참조) 209

[Fig. 46.] ¹H-NMR spectrum of Omeprazole intermediate 15(이미지참조) 209

[Fig. 47.] ¹H-NMR spectrum of Venlafaxine intermediate 18(이미지참조) 210

[Fig. 48.] ¹H-NMR spectrum of Rebamipid intermediate 21(이미지참조) 210

[Fig. 49.] ¹H-NMR spectrum of Quinolone intermediate 26(이미지참조) 211

[Fig. 50.] ¹H-NMR spectrum of Nilotinib intermediate 28(이미지참조) 211

[Fig. 51.] ¹H-NMR spectrum of 2-Amino-9-(ethyl... 212

[Fig. 52.] DSC data of Famciclovir intermediate 34(이미지참조) 213

[Fig. 53.] ¹H-NMR spectrum of Famciclovir intermediate 34(이미지참조) 213

[Fig. 54.] ¹H-NMR spectrum of Dasatinib intermediate 37(이미지참조) 214

[Fig. 55.] ¹H-NMR spectrum of Erlotinib intermediate 40(이미지참조) 214

[Fig. 56.] ¹H-NMR spectrum of Sorafenib intermediate 43(이미지참조) 215

[Fig. 57.] DSC & TGA data of compound A(이미지참조) 216

[Fig. 58.] ¹H-NMR spectrum of compound A(이미지참조) 217

[Fig. 59.] ¹³C-NMR spectrum of compound A(이미지참조) 217

[Fig. 60.] DSC & TGA data of compound B(이미지참조) 218

[Fig. 61.] ¹H-NMR spectrum of compound B(이미지참조) 219

[Fig. 62.] ¹³C-NMR spectrum of compound B(이미지참조) 219

[Fig. 63.] DSC & TGA data of compound C(이미지참조) 220

[Fig. 64.] ¹H-NMR spectrum of compound C(이미지참조) 221

[Fig. 65.] ¹³C-NMR spectrum of compound C(이미지참조) 221

[Fig. 66.] DSC & TGA data of compound D(이미지참조) 222

[Fig. 67.] ¹H-NMR spectrum of compound D(이미지참조) 223

[Fig. 68.] ¹³C-NMR spectrum of compound D(이미지참조) 223

[Fig. 69.] DSC & TGA data of compound E 224

[Fig. 70.] ¹H-NMR spectrum of compound E(이미지참조) 225

[Fig. 71.] ¹³C-NMR spectrum of compound E(이미지참조) 225

[Fig. 72.] DSC & TGA data of compound F(이미지참조) 226

[Fig. 73.] ¹H-NMR spectrum of compound F(이미지참조) 227

[Fig. 74.] ¹³C-NMR spectrum of compound F(이미지참조) 227

[Fig. 75.] DSC & TGA data of compound G(이미지참조) 228

[Fig. 76.] ¹H-NMR spectrum of compound G(이미지참조) 229

[Fig. 77.] ¹³C-NMR spectrum of compound G(이미지참조) 229

[Fig. 78.] DSC & TGA data of compound H(이미지참조) 230

[Fig. 79.] ¹H-NMR spectrum of compound H(이미지참조) 231

[Fig. 80.] ¹³C-NMR spectrum of compound H(이미지참조) 231

[Fig. 81.] DSC & TGA data of compound I(이미지참조) 232

[Fig. 82.] ¹H-NMR spectrum of compound I(이미지참조) 233

[Fig. 83.] DSC & TGA data of compound J(이미지참) 234

[Fig. 84.] ¹H-NMR spectrum of compound J(이미지참조) 235

[Fig. 85.] ¹³C-NMR spectrum of compound J(이미지참조) 235

[Fig. 86.] DSC & TGA data of compound K(이미지참조) 236

[Fig. 87.] ¹H-NMR spectrum of compound K(이미지참조) 237

[Fig. 88.] ¹³C-NMR spectrum of compound K(이미지참조) 237

[Fig. 89.] DSC &TGA data of compound L(이미지참조) 238

[Fig. 90.] ¹H-NMR spectrum of compound L(이미지참조) 239

[Fig. 91.] ¹³C-NMR spectrum of compound L(이미지참조) 239

[Fig. 92.] DSC & TGA data of compound M(이미지참조) 240

[Fig. 93.] ¹H-NMR spectrum of compound M(이미지참조) 241

[Fig. 94.] ¹³C-NMR spectrum of compound M(이미지참조) 241

[Fig. 95.] DSC & TGA data of compound N(이미지참조) 242

[Fig. 96.] XRD data of compound N(이미지참조) 243

[Fig. 97.] ¹H-NMR spectrum of compound N(이미지참조) 244

[Fig. 98.] ¹³C-NMR spectrum of compound N(이미지참조) 244

[Fig. 99.] Mass spectrum of compound N(이미지참조) 245

[Fig. 100.] DSC data of compound N-2(이미지참조) 246

[Fig. 101.] ¹H-NMR spectrum of compound N-2(이미지참조) 246

[Fig. 102.] ¹³C-NMR spectrum of compound N-2(이미지참조) 247

[Fig. 103.] DSC data of compound N-3(이미지참조) 248

[Fig. 104.] ¹H-NMR spectrum of compound N-3(이미지참조) 248

[Fig. 105.] ¹³C-NMR spectrum of compound N-3(이미지참조) 249

[Fig. 106.] DSC data of compound N-4(이미지참조) 250

[Fig. 107.] ¹H-NMR spectrum of compound N-4(이미지참조) 250

[Fig. 108.] ¹³C-NMR spectrum of compound N-4(이미지참조) 251

[Fig. 109.] DSC data of compound N-5(이미지참조) 252

[Fig. 110.] ¹H-NMR spectrum of compound N-5(이미지참조) 252

[Fig. 111.] ¹³C-NMR spectrum of compound N-5(이미지참조) 253

[Fig. 112.] DSC & TGA data of compound O(이미지참조) 254

[Fig. 113.] ¹H-NMR spectrum of compound O(이미지참조) 255

[Fig. 114.] ¹³C-NMR spectrum of compound O(이미지참조) 255

[Fig. 115.] DSC & TGA data of compound P(이미지참조) 256

[Fig. 116.] ¹H-NMR spectrum of compound P(이미지참조) 257

[Fig. 117.] ¹³C-NMR spectrum of compound P(이미지참조) 257

[Fig. 118.] DSC & TGA data of compound Q(이미지참조) 258

[Fig. 119.] XRD data of compound Q(이미지참조) 259

[Fig. 120.] ¹H-NMR spectrum of compound Q(이미지참조) 260

[Fig. 121.] ¹³C-NMR spectrum of compound Q(이미지참조) 260

[Fig. 122.] Mass spectrum of compound Q(이미지참조) 261

[Fig. 123.] DSC data of compound Q-2(이미지참조) 262

[Fig. 124.] ¹H-NMR spectrum of compound Q-2(이미지참조) 262

[Fig. 125.] ¹³C-NMR spectrum of compound Q-2(이미지참조) 263

[Fig. 126.] DSC data of compound Q-3(이미지참조) 264

[Fig. 127.] ¹H-NMR spectrum of compound Q-3(이미지참조) 264

[Fig. 128.] ¹³C-NMR spectrum of compound Q-3(이미지참조) 265

[Fig. 129.] DSC data of compound Q-4(이미지참조) 266

[Fig. 130.] ¹H-NMR spectrum of compound Q-4(이미지참조) 266

[Fig. 131.] ¹³C-NMR spectrum of compound Q-4(이미지참조) 267

[Fig. 132.] DSC data of compound Q-5(이미지참조) 268

[Fig. 133.] ¹H-NMR spectrum of compound Q-5(이미지참조) 268

[Fig. 134.] ¹³C-NMR spectrum of compound Q-5(이미지참조) 269

[Fig. 135.] DSC data of compound R(이미지참조) 270

[Fig. 136.] ¹H-NMR spectrum of compound R(이미지참조) 271

[Fig. 137.] ¹³C-NMR spectrum of compound R(이미지참조) 271

[Fig. 138.] DSC & TGA data of compound S(이미지참조) 272

[Fig. 139.] ¹H-NMR spectrum of compound S(이미지참) 273

[Fig. 140.] ¹³C-NMR spectrum of compound S(이미지참조) 273

[Fig. 141.] DSC & TGA data of compound T(이미지참조) 274

[Fig. 142.] ¹H-NMR spectrum of compound T(이미지참조) 275

[Fig. 143.] ¹³C-NMR spectrum of compound T(이미지참조) 275

[Fig. 144.] DSC & TGA data of compound U(이미지참조) 276

[Fig. 145.] ¹H-NMR spectrum of compound U(이미지참조) 277

[Fig. 146.] ¹³C-NMR spectrum of compound U(이미지참조) 277

[Fig. 147.] DSC & TGA data of compound V(이미지참조) 278

[Fig. 148.] ¹H-NMR spectrum of compound V(이미지참조) 279

[Fig. 149.] ¹³C-NMR spectrum of compound V(이미지참조) 279

[Fig. 150.] DSC & TGA data of compound W(이미지참조) 280

[Fig. 151.] XRD data of compound W(이미지참조) 281

[Fig. 152.] ¹H-NMR spectrum of compound W(이미지참조) 282

[Fig. 153.] ¹³C-NMR spectrum of compound W(이미지참) 282

[Fig. 154.] Mass spectrum of compound W(이미지참조) 283

[Fig. 155.] DSC data of compound X(이미지참조) 284

[Fig. 156.] ¹H-NMR spectrum of compound X(이미지참조) 285

[Fig. 157.] ¹³C-NMR spectrum of compound X(이미지참조) 285

도식목차

[Scheme 1.] Synthesis of Imatinib intermediate 3(이미지참조) 42

[Scheme 2.] Synthesis of Poziotib intermediate 7(이미지참조) 43

[Scheme 3.] Synthesis of Ticagrelor intermediate 11(이미지참조) 44

[Scheme 4.] Synthesis of Omeprazole intermediate 15(이미지참조) 45

[Scheme 5.] Synthesis of Venlafaxine intermediate 18(이미지참조) 50

[Scheme 6.] Synthesis of Rebamipid intermediate 21(이미지참조) 51

[Scheme 7.] Synthesis of Quinolone intermediate 26(이미지참조) 52

[Scheme 8.] Synthesis of Nilotinib intermediate 28(이미지참조) 58

[Scheme 9.] Synthesis of Famciclovir intermediate 34(이미지참조) 59

[Scheme 10.] Synthesis of Dasatinib intermediate 37(이미지참조) 60

[Scheme 11.] Synthesis of Erlotinib intermediate 40(이미지참조) 66

[Scheme 12.] Synthesis of Sorafenib intermediate 43(이미지참조) 67

[Scheme 13.] Synthesis of compound N-3(이미지참조) 90

초록보기

티로신 키나아제(tyrosine kinase)는 세포 내 신호 전달과 세포 활동을 조절하여 정상 세포의 성장 등에 중요한 역할을 하지만 과도한 티로신키나아제 활성은 암 및 자가 면역 질환 등을 일으키는 원인으로 알려져 있다.

2001년 미국 FDA에서 Bcr-Abl 티로신 키나아제 억제제로서 Imatinib(글리벡)을 허가함에 따라 항암치료제 개발에 있어 표적항암제라는 선택적이고 특이적인 치료제 개발이 가능하게 되었다. 그러나, Imatinib의 내성이 알려지면서 티로신 키나아제의 structural biology에 관련한 지식을 바탕으로 한 rational drug design을 통한 2세대 약물이 개발되기 시작하였다.

본 연구에서는 새로운 항암제를 개발하고자 약리활성이 확인된 약물들의 key intermediate 성분의 조합에 기초하는 분자 결합(molecular hybridization) 개념을 이용하여 새로운 화합물을 합성하였고, 이에 대한 생물학적 평가를 진행하였다. 그 결과, 특히, 다이아릴 우레아(diaryl urea) 구조가 도입된 화합물의 경우 우수한 항암 활성을 나타내었다. 또한, 화합물 N-3의 암세포에 대한 증식 억제 효과가 세포자살(Apoptosis)에 의한 세포사멸 기전임을 밝혔다.