권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
표제지
목차
초록 20
1. Introduction 21
1. Anticancer Therapy 21
2. Molecular Hybridization 25
3. Conventional Drugs 27
3-1) Anticancer drugs 27
3-2) Other disease drugs 34
II. Research Objectives and Results 37
1. Drug Discovery 37
2. Design & Molecular Construction 39
2-1) Synthesis of hybrid compounds A-F derived from Omeprazole intermediate(이미지참조) 39
2-2) Synthesis of hybrid compounds G-L derived from Quinolone intermediate(이미지참조) 46
2-3) Synthesis of hybrid compounds M-R derived from Sorafenib intermediate(이미지참조) 54
2-4) Synthesis of hybrid compounds S-X derived from Dasatinib & Erlotinib intermediate(이미지참조) 61
2-5) Biological Assay 68
3. Diaryl Urea Derivatives 74
3-1) Diaryl urea inhibitor 74
3-2) Design and synthesis of compounds N & Q derivatives(이미지참조) 76
3-3) Biological Assay 83
4. Biological Evaluation of Compound N-3(이미지참조) 85
4-1) Apoptosis 87
4-2) Materials and methods 89
4-3) Biological evaluation 95
III. Experimental Section 109
1. Chemistry 109
2. General Procedures 115
2-1) General procedures for preparation of conventional drug intermediates 115
2-2) General procedures for preparation of hybrid compounds A-X(이미지참조) 141
IV. Conclusion 197
V. Reference 199
VI. Appendix 207
Abstract 287
[Fig. 1.] Characteristic of cancer cells 21
[Fig. 2.] Classification of anti-cancer drugs 22
[Fig. 3.] History of therapy for anticancer drugs 23
[Fig. 4.] FDA-approved PKI drugs 24
[Fig. 5.] Proposal of chemical evolution by combination of different... 26
[Fig. 6.] Mechanism of action for Imatinib 27
[Fig. 7.] Mechanism of action for Sorafenib 28
[Fig. 8.] Mechanism of action for Nilotinib 29
[Fig. 9.] HER2-targeted therapies 30
[Fig. 10.] Mechanism of action for Dasatinib 31
[Fig. 11.] Mechanism of action for Erlotinib 32
[Fig. 12.] Mechanism of action for Decitabine 33
[Fig. 13.] A systemic diagram for developing of new drugs 37
[Fig. 14.] Mechanism of action for Omeprazole 39
[Fig. 15.] Molecular hybridization for synthesis of hybrid... 40
[Fig. 16.] Typical antibiotic drugs of fluoroquinolone 46
[Fig. 17.] Molecular hybridization for synthesis of hybrid... 48
[Fig. 18.] Ribbons diagram of B-RAF kinase domain in complex... 54
[Fig. 19.] Molecular hybridization for synthesis of hybrid... 56
[Fig. 20.] The generation mechanism of the Philadelphia chromosome 61
[Fig. 21.] Mechanism of action for Dasatinib 62
[Fig. 22.] Bcr-Abl binding with Imatinib, Dasatinib and Nilotinib 63
[Fig. 23.] Mechanism of action for Erlotinib 63
[Fig. 24.] Molecular hybridization for synthesis of hybrid... 64
[Fig. 25.] Hybrid compounds harboring diaryl urea scaffold (M, N, O, Q...(이미지참조) 72
[Fig. 26.] Hybrid compound W derived from Nilotinib and Dasatinib(이미지참조) 73
[Fig. 27.] Anticancer drugs harboring diaryl urea scaffold 75
[Fig. 28.] Crystal structure of Sorafenib bound to B-RAF kinase 76
[Fig. 29.] Structure of Sorafenib 77
[Fig. 30.] Design of compound N and compound Q(이미지참조) 77
[Fig. 31.] Synthetic plan of compound N derivatives(이미지참조) 79
[Fig. 32.] Synthetic plan of compound Q derivatives(이미지참조) 81
[Fig. 33.] Type of cell death 85
[Fig. 34.] Intrinsic/Extrinsic pathway of apoptosis 88
[Fig. 35.] Effect of compound N-3 on the viability of MCF-7,...(이미지참조) 96
[Fig. 36.] Effect of compound N-3 on apoptosis in MCF-7,...(이미지참조) 98
[Fig. 37.] Effect of compound N-3 on the levels of Bel-2 family...(이미지참조) 99
[Fig. 38.] Effect of compound N-3 on apoptosis in MCF-7,...(이미지참조) 100
[Fig. 39.] Effect of a caspase inhibitor (z-VAD-fmk) on cell death... 101
[Fig. 40.] Mechanism of action for apotosis 102
[Fig. 41.] Effect of compound N-3 on the PARP cleavage in...(이미지참조) 103
[Fig. 42.] Effect of compound N-3 on the levels of cell cycle...(이미지참조) 104
[Fig. 43.] ¹H-NMR spectrum of Imatinib intermediate 3(이미지참조) 208
[Fig. 44.] ¹H-NMR spectrum of Poziotinib intermediate 7(이미지참조) 208
[Fig. 45.] ¹H-NMR of spectrum Ticagrelor intermediate 11(이미지참조) 209
[Fig. 46.] ¹H-NMR spectrum of Omeprazole intermediate 15(이미지참조) 209
[Fig. 47.] ¹H-NMR spectrum of Venlafaxine intermediate 18(이미지참조) 210
[Fig. 48.] ¹H-NMR spectrum of Rebamipid intermediate 21(이미지참조) 210
[Fig. 49.] ¹H-NMR spectrum of Quinolone intermediate 26(이미지참조) 211
[Fig. 50.] ¹H-NMR spectrum of Nilotinib intermediate 28(이미지참조) 211
[Fig. 51.] ¹H-NMR spectrum of 2-Amino-9-(ethyl... 212
[Fig. 52.] DSC data of Famciclovir intermediate 34(이미지참조) 213
[Fig. 53.] ¹H-NMR spectrum of Famciclovir intermediate 34(이미지참조) 213
[Fig. 54.] ¹H-NMR spectrum of Dasatinib intermediate 37(이미지참조) 214
[Fig. 55.] ¹H-NMR spectrum of Erlotinib intermediate 40(이미지참조) 214
[Fig. 56.] ¹H-NMR spectrum of Sorafenib intermediate 43(이미지참조) 215
[Fig. 57.] DSC & TGA data of compound A(이미지참조) 216
[Fig. 58.] ¹H-NMR spectrum of compound A(이미지참조) 217
[Fig. 59.] ¹³C-NMR spectrum of compound A(이미지참조) 217
[Fig. 60.] DSC & TGA data of compound B(이미지참조) 218
[Fig. 61.] ¹H-NMR spectrum of compound B(이미지참조) 219
[Fig. 62.] ¹³C-NMR spectrum of compound B(이미지참조) 219
[Fig. 63.] DSC & TGA data of compound C(이미지참조) 220
[Fig. 64.] ¹H-NMR spectrum of compound C(이미지참조) 221
[Fig. 65.] ¹³C-NMR spectrum of compound C(이미지참조) 221
[Fig. 66.] DSC & TGA data of compound D(이미지참조) 222
[Fig. 67.] ¹H-NMR spectrum of compound D(이미지참조) 223
[Fig. 68.] ¹³C-NMR spectrum of compound D(이미지참조) 223
[Fig. 69.] DSC & TGA data of compound E 224
[Fig. 70.] ¹H-NMR spectrum of compound E(이미지참조) 225
[Fig. 71.] ¹³C-NMR spectrum of compound E(이미지참조) 225
[Fig. 72.] DSC & TGA data of compound F(이미지참조) 226
[Fig. 73.] ¹H-NMR spectrum of compound F(이미지참조) 227
[Fig. 74.] ¹³C-NMR spectrum of compound F(이미지참조) 227
[Fig. 75.] DSC & TGA data of compound G(이미지참조) 228
[Fig. 76.] ¹H-NMR spectrum of compound G(이미지참조) 229
[Fig. 77.] ¹³C-NMR spectrum of compound G(이미지참조) 229
[Fig. 78.] DSC & TGA data of compound H(이미지참조) 230
[Fig. 79.] ¹H-NMR spectrum of compound H(이미지참조) 231
[Fig. 80.] ¹³C-NMR spectrum of compound H(이미지참조) 231
[Fig. 81.] DSC & TGA data of compound I(이미지참조) 232
[Fig. 82.] ¹H-NMR spectrum of compound I(이미지참조) 233
[Fig. 83.] DSC & TGA data of compound J(이미지참) 234
[Fig. 84.] ¹H-NMR spectrum of compound J(이미지참조) 235
[Fig. 85.] ¹³C-NMR spectrum of compound J(이미지참조) 235
[Fig. 86.] DSC & TGA data of compound K(이미지참조) 236
[Fig. 87.] ¹H-NMR spectrum of compound K(이미지참조) 237
[Fig. 88.] ¹³C-NMR spectrum of compound K(이미지참조) 237
[Fig. 89.] DSC &TGA data of compound L(이미지참조) 238
[Fig. 90.] ¹H-NMR spectrum of compound L(이미지참조) 239
[Fig. 91.] ¹³C-NMR spectrum of compound L(이미지참조) 239
[Fig. 92.] DSC & TGA data of compound M(이미지참조) 240
[Fig. 93.] ¹H-NMR spectrum of compound M(이미지참조) 241
[Fig. 94.] ¹³C-NMR spectrum of compound M(이미지참조) 241
[Fig. 95.] DSC & TGA data of compound N(이미지참조) 242
[Fig. 96.] XRD data of compound N(이미지참조) 243
[Fig. 97.] ¹H-NMR spectrum of compound N(이미지참조) 244
[Fig. 98.] ¹³C-NMR spectrum of compound N(이미지참조) 244
[Fig. 99.] Mass spectrum of compound N(이미지참조) 245
[Fig. 100.] DSC data of compound N-2(이미지참조) 246
[Fig. 101.] ¹H-NMR spectrum of compound N-2(이미지참조) 246
[Fig. 102.] ¹³C-NMR spectrum of compound N-2(이미지참조) 247
[Fig. 103.] DSC data of compound N-3(이미지참조) 248
[Fig. 104.] ¹H-NMR spectrum of compound N-3(이미지참조) 248
[Fig. 105.] ¹³C-NMR spectrum of compound N-3(이미지참조) 249
[Fig. 106.] DSC data of compound N-4(이미지참조) 250
[Fig. 107.] ¹H-NMR spectrum of compound N-4(이미지참조) 250
[Fig. 108.] ¹³C-NMR spectrum of compound N-4(이미지참조) 251
[Fig. 109.] DSC data of compound N-5(이미지참조) 252
[Fig. 110.] ¹H-NMR spectrum of compound N-5(이미지참조) 252
[Fig. 111.] ¹³C-NMR spectrum of compound N-5(이미지참조) 253
[Fig. 112.] DSC & TGA data of compound O(이미지참조) 254
[Fig. 113.] ¹H-NMR spectrum of compound O(이미지참조) 255
[Fig. 114.] ¹³C-NMR spectrum of compound O(이미지참조) 255
[Fig. 115.] DSC & TGA data of compound P(이미지참조) 256
[Fig. 116.] ¹H-NMR spectrum of compound P(이미지참조) 257
[Fig. 117.] ¹³C-NMR spectrum of compound P(이미지참조) 257
[Fig. 118.] DSC & TGA data of compound Q(이미지참조) 258
[Fig. 119.] XRD data of compound Q(이미지참조) 259
[Fig. 120.] ¹H-NMR spectrum of compound Q(이미지참조) 260
[Fig. 121.] ¹³C-NMR spectrum of compound Q(이미지참조) 260
[Fig. 122.] Mass spectrum of compound Q(이미지참조) 261
[Fig. 123.] DSC data of compound Q-2(이미지참조) 262
[Fig. 124.] ¹H-NMR spectrum of compound Q-2(이미지참조) 262
[Fig. 125.] ¹³C-NMR spectrum of compound Q-2(이미지참조) 263
[Fig. 126.] DSC data of compound Q-3(이미지참조) 264
[Fig. 127.] ¹H-NMR spectrum of compound Q-3(이미지참조) 264
[Fig. 128.] ¹³C-NMR spectrum of compound Q-3(이미지참조) 265
[Fig. 129.] DSC data of compound Q-4(이미지참조) 266
[Fig. 130.] ¹H-NMR spectrum of compound Q-4(이미지참조) 266
[Fig. 131.] ¹³C-NMR spectrum of compound Q-4(이미지참조) 267
[Fig. 132.] DSC data of compound Q-5(이미지참조) 268
[Fig. 133.] ¹H-NMR spectrum of compound Q-5(이미지참조) 268
[Fig. 134.] ¹³C-NMR spectrum of compound Q-5(이미지참조) 269
[Fig. 135.] DSC data of compound R(이미지참조) 270
[Fig. 136.] ¹H-NMR spectrum of compound R(이미지참조) 271
[Fig. 137.] ¹³C-NMR spectrum of compound R(이미지참조) 271
[Fig. 138.] DSC & TGA data of compound S(이미지참조) 272
[Fig. 139.] ¹H-NMR spectrum of compound S(이미지참) 273
[Fig. 140.] ¹³C-NMR spectrum of compound S(이미지참조) 273
[Fig. 141.] DSC & TGA data of compound T(이미지참조) 274
[Fig. 142.] ¹H-NMR spectrum of compound T(이미지참조) 275
[Fig. 143.] ¹³C-NMR spectrum of compound T(이미지참조) 275
[Fig. 144.] DSC & TGA data of compound U(이미지참조) 276
[Fig. 145.] ¹H-NMR spectrum of compound U(이미지참조) 277
[Fig. 146.] ¹³C-NMR spectrum of compound U(이미지참조) 277
[Fig. 147.] DSC & TGA data of compound V(이미지참조) 278
[Fig. 148.] ¹H-NMR spectrum of compound V(이미지참조) 279
[Fig. 149.] ¹³C-NMR spectrum of compound V(이미지참조) 279
[Fig. 150.] DSC & TGA data of compound W(이미지참조) 280
[Fig. 151.] XRD data of compound W(이미지참조) 281
[Fig. 152.] ¹H-NMR spectrum of compound W(이미지참조) 282
[Fig. 153.] ¹³C-NMR spectrum of compound W(이미지참) 282
[Fig. 154.] Mass spectrum of compound W(이미지참조) 283
[Fig. 155.] DSC data of compound X(이미지참조) 284
[Fig. 156.] ¹H-NMR spectrum of compound X(이미지참조) 285
[Fig. 157.] ¹³C-NMR spectrum of compound X(이미지참조) 285
[Scheme 1.] Synthesis of Imatinib intermediate 3(이미지참조) 42
[Scheme 2.] Synthesis of Poziotib intermediate 7(이미지참조) 43
[Scheme 3.] Synthesis of Ticagrelor intermediate 11(이미지참조) 44
[Scheme 4.] Synthesis of Omeprazole intermediate 15(이미지참조) 45
[Scheme 5.] Synthesis of Venlafaxine intermediate 18(이미지참조) 50
[Scheme 6.] Synthesis of Rebamipid intermediate 21(이미지참조) 51
[Scheme 7.] Synthesis of Quinolone intermediate 26(이미지참조) 52
[Scheme 8.] Synthesis of Nilotinib intermediate 28(이미지참조) 58
[Scheme 9.] Synthesis of Famciclovir intermediate 34(이미지참조) 59
[Scheme 10.] Synthesis of Dasatinib intermediate 37(이미지참조) 60
[Scheme 11.] Synthesis of Erlotinib intermediate 40(이미지참조) 66
[Scheme 12.] Synthesis of Sorafenib intermediate 43(이미지참조) 67
[Scheme 13.] Synthesis of compound N-3(이미지참조) 90
티로신 키나아제(tyrosine kinase)는 세포 내 신호 전달과 세포 활동을 조절하여 정상 세포의 성장 등에 중요한 역할을 하지만 과도한 티로신키나아제 활성은 암 및 자가 면역 질환 등을 일으키는 원인으로 알려져 있다.
2001년 미국 FDA에서 Bcr-Abl 티로신 키나아제 억제제로서 Imatinib(글리벡)을 허가함에 따라 항암치료제 개발에 있어 표적항암제라는 선택적이고 특이적인 치료제 개발이 가능하게 되었다. 그러나, Imatinib의 내성이 알려지면서 티로신 키나아제의 structural biology에 관련한 지식을 바탕으로 한 rational drug design을 통한 2세대 약물이 개발되기 시작하였다.
본 연구에서는 새로운 항암제를 개발하고자 약리활성이 확인된 약물들의 key intermediate 성분의 조합에 기초하는 분자 결합(molecular hybridization) 개념을 이용하여 새로운 화합물을 합성하였고, 이에 대한 생물학적 평가를 진행하였다. 그 결과, 특히, 다이아릴 우레아(diaryl urea) 구조가 도입된 화합물의 경우 우수한 항암 활성을 나타내었다. 또한, 화합물 N-3의 암세포에 대한 증식 억제 효과가 세포자살(Apoptosis)에 의한 세포사멸 기전임을 밝혔다.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.