본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

Contents

Nomenclature 11

Abstract 13

I. Introduction 15

1.1. Background 15

1.2. Previous studies 18

1.3. Objectives of this study 25

II. Experimental setup and method 27

2.1. Synthesis of Fe₃O₄ nanoparticles 27

2.2. Preparation method of MWCNT/Fe₃O₄ hybrid nanofluid 29

2.3. Thermal conductivity measurement of MWCNT, Fe₃O₄, and MWCNT/Fe₃O₄ hybrid nanofluids 37

2.4. Experimental setup and equipments of convective heat transfer 39

A. Brazed plate heat exchanger 42

B. Micro gear pump 43

C. Power supply 44

D. Low temperature water bath 45

E. Precision balance 46

F. T-type thermocouple 47

G. Pressure transmitter 48

H. Data acquisition system 49

2.5. Operating condition and method of experiment 50

2.6. Data reduction 52

2.7. Uncertainty analysis 54

III. Results and discussion 55

3.1. Validation of the experimental result 55

3.2. Thermal conductivity of MWCNT, Fe₃O₄, and MWCNT/Fe₃O₄ hybrid nanofluids 57

3.3. Convective heat transfer of MWCNT, Fe₃O₄, and MWCNT/Fe₃O₄ hybrid nanofluids 60

3.4. Pressure drop of MWCNT, Fe₃O₄, and MWCNT/Fe₃O₄ hybrid nanofluids 69

3.5. Comparison of the convective heat transfer characteristics of MWCNT, Fe₃O₄, and MWCNT/Fe₃O₄ hybrid nanofluids 78

IV. Conclusion 97

REFERENCE 100

List of Tables

Table 1.1. Summary of studies on convective heat transfer of various nanofluid 22

Table 2.1. Thermo-physical properties of MWCNT and Fe₃O₄ nanoparticles 31

Table 2.2. Thermo-physical properties of working fluids at different weight... 31

Table 2.3. Experiment conditions of convective heat transfer 39

Table 2.4. Specifications of brazed plate heat exchanger 42

Table 2.5. Specifications of micro gear pump 43

Table 2.6. Specifications of DC power supply 44

Table 2.7. Specifications of DC power supply 45

Table 2.8. Specifications of precision balance 46

Table 2.9. Specifications of T-type thermocouple 47

Table 2.10. Specifications of pressure transmitter 48

Table 2.11. Specifications of data acquisition system 49

Table 2.12. Operating conditions of experiment 51

Table 2.13. The uncertainties of measuring devices 54

Table 2.14. The uncertainty analysis for the experimental results 54

List of Figures

Fig. 1.1. Nanoscale combination of nanoparticle and biomolecule 16

Fig. 1.2. Number of papers related to nanofluids 17

Fig. 2.1. The developed co-precipitation method of Fe₃O₄ nanoparticle 28

Fig. 2.2. Preparation of hybrid nanofluid using a two-step method 30

Fig. 2.3. TEM images of (a) MWCNT nanoparticle, (b) Fe₃O₄ nanoparticle, and (c)... 33

Fig. 2.4. XRD images of (a) MWCNT nanoparticle, (b) Fe₃O₄ nanoparticle and (c)... 35

Fig. 2.5. Pictures of (a) MWCNT nanofluids, (b) Fe₃O₄ nanofluids, and (c)... 36

Fig. 2.6. Thermal conductivity measurement devices of (a) KD2 Pro, (b) Thermal... 38

Fig. 2.7. Experimental setup of convective heat transfer (a) Schematic of... 41

Fig. 2.8. Brazed plate heat exchanger (B3-030-10-3.0-HQ) 42

Fig. 2.9. Micro gear pump (WT3000-1FA) 43

Fig. 2.10. DC power supply (DSP-2005) 44

Fig. 2.11. Low temperature water bath (RBC-08) 45

Fig. 2.12. The mass flow rate measurement of (a) Precision Balance (FX-300i) 46

Fig. 2.13. T-type thermocouples 47

Fig. 2.14. Pressure transmitter (2301005PD2F11BC) 48

Fig. 2.15. Data acquisition system (MX100) 49

Fig. 3.1. Comparison of the measured Nusselt number with the theoretical... 56

Fig. 3.2. Variation of the thermal conductivity at the temperature of 25℃ under... 59

Fig. 3.3. Variation of the convective heat transfer coefficient with MWCNT... 63

Fig. 3.4. Nusselt number of MWCNT nanofluids according to the weight... 64

Fig. 3.5. Variation of the convective heat transfer coefficient with Fe₃O₄... 65

Fig. 3.6. Nusselt number of Fe₃O₄ nanofluids according to the weight... 66

Fig. 3.7. Variation of the convective heat transfer coefficient with MWCNT/Fe₃O₄... 67

Fig. 3.8. Nusselt number of MWCNT/Fe₃O₄ hybrid nanofluids according to the... 68

Fig. 3.9. Variation of pressure drop with MWCNT nanofluids according to Reynolds... 72

Fig. 3.10. Variation of friction factor with MWCNT nanofluids according to the... 73

Fig. 3.11. Variation of pressure drop with Fe₃O₄ nanofluids according to Reynolds... 74

Fig. 3.12. Variation of friction factor with Fe₃O₄ nanofluids according to the weight... 75

Fig. 3.13. Variation of pressure drop with MWCNT/Fe₃O₄ hybrid nanofluids... 76

Fig. 3.14. Variation of friction factor with MWCNT/Fe₃O₄ hybrid nanofluids... 77

Fig. 3.15. Comparison of the convective heat transfer coefficient of MWCNT,... 81

Fig. 3.16. Comparison of the convective heat transfer coefficient of MWCNT,... 82

Fig. 3.17. Comparison of the convective heat transfer coefficient of MWCNT,... 83

Fig. 3.18. Comparison of the convective heat transfer coefficient of MWCNT,... 84

Fig. 3.19. Comparison of pressure drop of MWCNT, Fe₃O₄ and MWCNT/Fe₃O₄... 87

Fig. 3.20. Comparison of pressure drop of MWCNT, Fe₃O₄ and MWCNT/Fe₃O₄... 88

Fig. 3.21. Comparison of pressure drop of MWCNT, Fe₃O₄ and MWCNT/Fe₃O₄... 89

Fig. 3.22. Comparison of pressure drop of MWCNT, Fe₃O₄ and MWCNT/Fe₃O₄... 90

Fig. 3.23. Comparison of friction factor of MWCNT, Fe₃O₄, and MWCNT/Fe₃O₄... 93

Fig. 3.24. Comparison of friction factor of MWCNT, Fe₃O₄, and MWCNT/Fe₃O₄... 94

Fig. 3.25. Comparison of friction factor of MWCNT, Fe₃O₄, and MWCNT/Fe₃O₄... 95

Fig. 3.26. Comparison of friction factor of MWCNT, Fe₃O₄, and MWCNT/Fe₃O₄... 96