본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

Contents

Abstract 7

1. Introduction 8

2. Theory 11

2.1. Organic solar cells 11

2.2. Working principle of organic solar cells 14

2.2.1. Light absorption 14

2.2.2. Exciton diffusion 15

2.2.3. Exciton dissociation 15

2.2.4. Charge transport and collection 15

2.3. Performance parameters of organic solar cells 17

2.3.1. Open-circuit voltage (Voc)[이미지참조] 18

2.3.2. Short-circuit current density (Jsc)[이미지참조] 19

2.3.3. Fill factor (FF) 19

2.3.4. Power conversion efficiency (PCE) 19

2.4. Non-fullerene acceptors 21

3. Experimental 25

3.1. Materials and instruments 25

3.2. Synthetic route of non-fullerene acceptors 26

3.2.1. Synthesis of 2H-benzo[d][1,2,3]triazole (1) 26

3.2.2. Synthesis of 2-hexyl-2H-benzo[d][1,2,3]triazole (2) 26

3.2.3. Synthesis of 4,7-dibromo-2-hexyl-2H-benzo[d][1,2,3]triazole (3) 27

3.2.4. Synthesis of 4,7-dibromo-2-hexyl-5,6-dinitro-2H-benzo[d][1,2,3] triazole (4) 27

3.2.5. Synthesis of tributyl(thieno[3,2-b]thiophen-2-yl)stannane (A) 28

3.2.6. Synthesis of tributyl(6-undecylthieno[3,2-b]thiophen-2-yl)stannane (B) 28

3.2.7. Synthesis of 2-hexyl-5,6-dinitro-4,7-bis(thieno[3,2-b]thiophen-2-yl)-2H-benzo[d][1,2,3]triazole (5a) 28

3.2.8. Synthesis of 2-hexyl-5,6-dinitro-4,7-bis(6-undecylthieno[3,2-b]thiophen-2-yl)-2H-benzo[d][1,2,3]triazole (5b) 29

3.2.9. Synthesis of 6-hexyl-12,13-dihydro-6H-thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b][1,2,3]triazolo[4,5-e]indole (6a) 29

3.2.10. Synthesis of 6-hexyl-3,9-diundecyl-12,13-dihydro-6H-thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b][1,2,3]triazolo[4,5-e]indole (6b) 30

3.2.11. Synthesis of 12,13-bis(2-ethylhexyl)-6-hexyl-12,13-dihydro-6H-thieno [2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b][1,2,3] triazolo[4,5-e]indole (7a) 30

3.2.12. Synthesis of 12,13-bis(2-ethylhexyl)-6-hexyl-3,9-diundecyl-12,13-dihydro-6H-thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5] thieno[3,2-b][1,2,3]triazolo[4,5-e]indole (7b) 31

3.2.13. Synthesis of 12,13-bis(2-ethylhexyl)-6-hexyl-12,13-dihydro-6H-thieno [2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b][1,2,3] triazolo[4,5-e]indole-2,10-dicarbaldehyde (8a) 31

3.2.14. Synthesis of 12,13-bis(2-ethylhexyl)-6-hexyl-3,9-diundecyl-12,13-dihydro-6H-thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5] thieno[3,2-b][1,2,3]triazolo[4,5-e]indole-2,10-dicarbaldehyde (8b) 32

3.2.15. Synthesis of 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-6-hexyl-12,13-dihydro-6H-thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5] thieno[3,2-b][1,2,3]triazolo[4,5-e]indole-2,10-diyl)bis(methanylylidene))bis (5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (BTA-4F) 32

3.2.16. Synthesis of 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-6-hexyl-3,9-diun decyl-12,13-dihydro-6H-thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thi eno[2',3':4,5]thieno[3,2-b][1,2,3]triazolo[4,5-e]indole-2,10-diyl)bis(methanyl ylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dima lononitrile (BTA-UD-4F) 33

3.3. Fabrication of non-fullerene organic solar cells 35

3.4. Measurements and characterization of non-fullerene organic solar cells 36

4. Results and Discussion 37

4.1. Synthesis and characterization 37

4.2. Thermal properties 40

4.3. Optical properties 42

4.4. Electrochemical properties 45

4.5. Photovoltaic properties of non-fullerene organic solar cells 48

4.6. Hole and electron mobility studies 52

4.7. Surface morphology of non-fullerene organic solar cells 56

4.8. Contact angle studies 58

5. Conclusion 60

Reference 61

요약 64

List of Tables

Table 1. Thermal, optical and electrochemical properties of BTA-4F and BTA-UD-4F. 47

Table 2. Photovoltaic properties of PM7:BTA-4F and PM7:BTA-UD-4F-based NFOSCs. 51

Table 3. The hole and electron mobility of BTA-4F, BTA-UD-4F and PM7:NFAs. 55

List of Figures

Figure 1. (a) Conventional and (b) inverted device structure of OSCs. 13

Figure 2. The working principle of OSCs. 16

Figure 3. The graph of voltage and current density. 17

Figure 4. Voc for energy level between the HOMO of electron donor and the LUMO of electron acceptor.[이미지참조] 18

Figure 5. Chemical structures of NFAs. 24

Figure 6. (a) ¹H NMR and (b) ¹³C NMR spectra of BTA-4F. 38

Figure 7. (a) ¹H NMR and (b) ¹³C NMR spectra of BTA-UD-4F. 39

Figure 8. TGA curves of BTA-4F and BTA-UD-4F. 41

Figure 9. DSC curves of BTA-4F and BTA-UD-4F. 41

Figure 10. The normalized absorption spectra of (a) BTA-4F and BTA-UD-4F in CHCl₃ solution state and (b) BTA-4F, BTA-UD-4F and PM7 film state. 43

Figure 11. The normalized absorption spectra of PM7:NFAs. 44

Figure 12. Cyclic voltammograms of (a) Ferrocene and (b) BTA-4F and BTA-UD-4F. 46

Figure 13. (a) Device structure of PM7:NFAs and (b) energy level diagrams for PM7, BTA-4F and BTA-UD-4F. 49

Figure 14. (a) J-V curves, (b) EQE spectra and (c) Integrated Jsc spectra of PM7:BTA-4F and PM7:BTA-UD-4F.[이미지참조] 50

Figure 15. The device structure of (a) hole-only and (b) electron-only. 53

Figure 16. (a) The electron-only devices (BTA-4F and BTA-UD-4F), (b) the hole-only devices (PM7:NFAs) and (c) the electron-only devices (PM7:NFAs). 54

Figure 17. AFM images of (a) PM7:BTA-4F and (b) PM7:BTA-UD-4F. 57

Figure 18. Water contact angle images of (a) BTA-4F, (b) BTA-UD-4F, (c) PM7:BTA-4F and (d) PM7:BTA-UD-4F. 59

List of Schemes

Scheme 1. Synthetic route of non-fullerene acceptors (BTA-4F and BTA-UD-4F). 34

초록보기

최근 "Y-시리즈" 비-풀러렌 수용체가 등장한 이후, 유기 태양 전지 분야에서 높은 전력 변환 효율을 보여주기 시작했다. 여기에서 우리는 벤조트리아졸 부분의 n-헥실 체인을 기반으로 하여 싸이에노싸이오펜 부분에 운데실 체인이 없는 BTA-4F와 운데실 체인이 있는 BTA-UD-4F인 비-풀러렌 수용체를 설계하고 합성하였다. 또한 우리는 다양한 사이드 체인의 영향을 열적, 광학적, 전기 화학적 특성과 비-풀러렌 유기 태양 전지를 기반으로 한 장치 성능을 통해 연구했다. 우리의 연구에 따르면 두 개의 비-풀러렌 수용체는 좋은 전자 이동성과 표면 형태를 나타내지만 BTA-UD-4F는 BTA-4F에 비해 전자 이동도가 더 좋고 더 좋은 표면 형태를 나타낸다. 따라서 PM7:BTA-UD-4F는 더 나은 단략 전류 밀도를 보여준다. 그 결과 PM7:BTA-4F는 0.76 V의 개방 회로 전압, 18.04 mA cm-2의 단략 전류 밀도 그리고 62.23%의 충진계수를 포함한 8.26%의 전력 변환 효율을 보였으며, PM7:BTA-UD-4F는 0.71 V의 개방 회로 전압, 21.08 mA cm-2의 단략 전류 밀도 그리고 62.04%의 충진계수를 포함한 9.12%의 우수한 전력 변환 효율을 보여준다. 본 연구를 통해 비-풀러렌 수용체의 사이드 체인 조절은 전력 변환 효율을 개선하기위한 중요한 전략으로 간주된다.