본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

Contents

Chapter 1. Introduction 11

Chapter 2. Electrodeposited Transition metal compounds for Oxygen Evolution Reaction 12

2.1. Introduction 13

2.2. Experimental 15

2.2.1. Materials 15

2.2.2. Potentiostatic deposition of CNSe, FeOOH, and bilayer CNSe/FeOOH Thin film 15

2.2.3. Materials characterization 16

2.2.4. Electrochemical charaterization 17

2.3. Results and Discussion 17

2.3.1. Physical characteristics 17

2.3.2. Electrochemical characteristics 30

2.4. Conclusions 46

Bibliography 47

Curriculum Vitae 56

요약 58

List of Tables

Table. 2.1. Electrocatalytic performance comparison of the CNSe/FeOOH electrocatalyst with other FeOOH-based heterojuction materials 35

List of Figures

Figure 2.1. Schematic illustration of the electrodeposition of the CNSe/FeOOH bilayer thin film 19

Figure 2.2. Schematic diagram illustrating the potentiostatic deposition of CoNi2Se4 (CNSe), FeOOH and CNSe/FeOOH electrodes on the Ni-Foam substrate 20

Figure 2.3. Low- and high-resolution FE-SEM images of (a1, a2) CNSe, (b1, b2) FeOOH, and (c1, c2) CNSe/FeOOH thin films. (d, e) Electron image and the corresponding EDS... 22

Figure 2.4. TEM, HRTEM, and SAED images of (a-c) CNSE, (d-f) FeOOH and (g-j) CNSe/FeOOH thin films 25

Figure 2.5. XRD patterns of CNSe, FeOOH, and CNSe/FeOOH thin films 26

Figure 2.6. (a) XPS survey scan spectrum of CNSe/FeOOH bilayer thin film and (b-f) high-resolution XPS spectra of Co 2p, Ni 2p, Se 3d, Fe 2p, and O 1s 29

Figure 2.7. Electrocatalytic OER performance of CNSe, FeOOH, and CNSe/FeOOH. b) Polarization curves of catalysts for OER 31

Figure 2.8. Overpotential at a current density of 10 mA cm-2[이미지참조] 32

Figure 2.9. Corresponding Tafel plots 34

Figure 2.10. Cyclic voltammetry curves of (a) CNSe, (b) FeOOH, and (c) CNSe/FeOOH electrocatalysts in the non-Faradaic region at different scan rates from 100 to 500mV s-1[이미지참조] 37

Figure 2.11. Plots of current density versus the scan rate 38

Figure 2.12. Nyquist plots obtained by EIS at 1.557 V vs. RHE 39

Figure 2.13. Electrocatalytic OER performance: (a) chronopotentiometry stability curve of CNSe/FeOOH, (b) multicurrent chronopotentiometry of CNSe/FeOOH 42

Figure 2.14. Plot of current density Vs. the scan rate 43

Figure 2.15. Nyquist plots obtained by EIS at 1.553V vs. RHE after stability 44

Figure 2.16. SEM images of the CNSe/FeOOH electrocatalyst (a,b) before chronopotentiometry stability and (c,d) after chronopotentiometry stability 45

초록보기

산소발생실험은 촉매를 활용하여 물을 분해하는 실험이다. 물분해는 크게 산소발생과 수소발생으로 나뉘는데 산소발생은 4개의 전자가 이동하며 이뤄진다. 산소발생은 수소발생에 비해 많은 전자가 필요하여 산소발생이 이뤄지는 속도에 따라 수소발생 또한 속도가 조절된다. 따라서 많은 수소를 발생시키기 위해서는 산소발생 또한 빠르게 진행되는 것이 중요하다. 본 논문에서는 니켈기판에 전기화학 증착법을 활용해 단시간, 간단한 방법으로 CoNi₂Se₄와 FeOOH를 이중층으로 형성시켜 전이금속 화합물 간의 시너지 효과를 발생시켰다. 그 결과 기존의 촉매보다 필요로 하는 과전압이 크게 줄어들고 내구성과 성능 또한 크게 개선되었다.