권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Title Page
Abstract
국문 초록
Contents
Abbreviations 39
Chapter 1. Research background and literature review 41
1.1. Crossing planetary boundaries: catastrophic consequences for humanity 41
1.2. Renewable biomass: future circular economy 43
1.3. Chitin: wealth from crustacean shell waste 46
1.3.1. Overview of chitin and nanochitin 48
1.3.2. Chemistry and properties of chitin and nanochitin 50
1.3.3. Chitin biosynthesis 59
1.3.4. Multiscale structural-functional diversities of nanochitin in nature 60
1.3.5. Multiscale assembly of nanochitin 67
1.4. Polymer composites from renewable biomass 72
1.4.1. Prospects 72
1.4.2. Optimizing the performance of bio-based composites 73
1.5. Nanoparticle tissue adhesives 76
1.5.1. First reports on silica nanoparticles 77
1.5.2. Adhesion mechanisms? 77
1.5.3. Further development 81
1.6. Underwater biomolecular adhesion 83
1.6.1. Polyvalency and chaotropicity 83
1.6.2. Guanidinium-based underwater "molecular adhesives" 84
1.7. Research objectives and thesis organization 88
Chapter 2. Top-down engineering of nanochitin 92
2.1. Introduction 92
2.1.1. Target properties of nanochitin 92
2.1.2. Top-down production of nanochitin 94
2.1.3. Post-surface modification of nanochitin 103
2.1.4. Objectives 106
2.2. Results and discussion 107
2.2.1. Chemical structure 107
2.2.2. Nanoparticle size 111
2.2.3. Crystal structure 118
2.2.4. Surface functional group content, surface potential, and colloidal stability 121
2.3. Conclusions 123
2.4. Experimental 125
2.4.1. Nanochitin preparation 126
2.4.2. Characterization 127
Chapter 3. Rediscovery of nylon upgraded by interactive bio-renewable nanofillers 137
3.1. Introduction 137
3.2. Results and discussion 140
3.2.1. Preparation of nylon 66 nanocomposite films with bio-renewable nanofillers 140
3.2.2. Tuning the mechanical properties of Ny66 nanocomposites 146
3.2.3. Structural analysis of uniaxial deformation and interfacial interaction 150
3.2.4. Thermal behavior of the nylon 66 composites 165
3.3. Conclusions 172
3.4. Experimental 172
3.4.1. Interfacial polymerization 172
3.4.2. Preparation of nanocomposite films 173
3.4.3. Characterization 174
Chapter 4. Strong, multifaceted guanidinium-based adhesion of nanochitin to wet biological tissue 177
4.1. Introduction 177
4.2. Results and discussion 179
4.2.1. Designing and characterizing bioorganic nano-adhesives 179
4.2.2. Nanoparticle adhesion to soft, wet substrates 184
4.2.3. Macroscopic and molecular-level adhesion mechanism 197
4.2.4. Underwater adhesion 210
4.2.5. Hemostatic, antibacterial, and biocompatible properties of the nanoparticles 213
4.2.6. Degradation characteristic of the nanoparticle adhesive 217
4.3. Conclusions 221
4.4. Experimental 223
4.4.1. Gelatin hydrogels and porcine skin 223
4.4.2. Hydrogel preparation 224
4.4.3. Hydrogel characterization (spectroscopy) 226
4.4.4. Adhesion of nanoparticle suspensions to hydrogels and biological tissue 226
4.4.5. Underwater adhesion 227
4.4.6. Nanoparticle adsorption on a wet surface 228
4.4.7. Molecular quantification of the adhesion energy of guanidinium-mediated noncovalent interactions by surface forces apparatus 228
4.4.8. Calculation of salt bridge interaction efficiencies 229
4.4.9. Blood rheology 230
4.4.10. Thromboelastography 231
4.4.11. Antibacterial testing 231
4.4.12. In vivo allergic immune responses 232
4.4.13. In vitro degradation 233
Chapter 5. Conclusions and Perspectives 234
5.1. Merits of chitin over cellulose as a sustainable feedstock 235
5.2. Industrial production and commercialization of nanochitin 236
5.3. Consumer acceptability 237
5.4. Optimizing nanochitin performance for a circular bioeconomy 238
Bibliography 239
Appendices 273
Appendix A. Mechanical properties of chitin and chitosan 274
Appendix B. Material information 276
Appendix C. Characterization and properties of cellulose nanocrystals 282
Appendix D. Data analysis and graphic design 285
Curriculum Vitae 286
Figure 1-1. Nine planetary boundaries as of 2022. The inner dark green shading represents the proposed safe operating space, and the orange wedges represent an estimate of the current position for each boundary. BII,... 42
Figure 1-2. The global flow of plastic packaging in 2013, based on the Project MainStream analysis by World Economic Forum, Ellen MacArthur Foundation & McKinsey & Company (2016). Although energy recovery from... 44
Figure 1-3. Refinery of crustacean shell waste. The shells contain three major chemicals that have many uses. Sustainably refining them can facilitate the growth of the circular bioeconomy. 47
Figure 1-4. The crystal structure of α-chitin and β-chitin. a. View from the bc projection [top of the N-acetylglucosamine (GlcNAc) residue six-membered ring and along the Oa primary axis], which is tilted to clearly... 51
Figure 1-5. Spectroscopic fingerprints of α- and β-chitin. a. In the infrared spectra (1800-1400 cm-1 region) of the two allomorphs, native α-chitin is characterized by a splitting of the amide I (C=O stretching) vibration into signals...[이미지참조] 54
Figure 1-6. Mechanical properties of nanochitin. a. Ashby plot showing Young's modulus as a function of ultimate tensile strength reported in the literature. b. Qualitative diagram showing the size-cohesion relationship for chitin... 56
Figure 1-7. Hierarchical structure of the lobster cuticle based on Nikolov et al. (2010). Hexagons (yellow) in mineralized chitin-protein fiber planes indicate the honeycomb arrays with a segment length of 200 nm. It should be... 61
Figure 1-8. Optical properties of natural chitinous structures. a. Schematics of chitin nanofibers assembling in a helicoidal plywood (Bouligand) structure that enables structural colors. A left-handed helicoid reflects left-handed... 63
Figure 1-9. Adhesive structures of chitin in nature. Scanning electron microscopic images and schematic showing the spatula- and spindle-like structures found in the terminal elements (circles) of beetle, fly, and spider, indicating... 66
Figure 1-10. Nanoscale interactions of nanochitin. a. Tomography reconstructions and chirality obtained from cryogenic transmission electron microscopic images of an individual chitin nanowhisker (ChNW) based on principal... 69
Figure 1-11. Assembly of chitin nanowhiskers (ChNWs). a. Lyotropic liquid crystalline transition of ChNWs as a function of concentration (wt%). The aqueous suspensions exhibit phase separation on standing, showing a dark,... 71
Figure 1-12. Controlling the performance of nanochitin-reinforced polymer composites. a. Stress-strain curves of chitin nanowhisker (ChNW)/unvulcanized natural rubber composite films obtained by casting-evaporation from... 75
Figure 1-13. Gluing soft, wet substrates with silica nanoparticle suspensions. a. Schematic illustration of the concept of gluing wet polymeric substrates together using nanoparticles. Network chains (blue) are adsorbed on nanoparticles... 78
Figure 1-14. Designing mesoporous silica nanoparticle (MSNP) adhesives. a. Graphical illustration of the hydrogel/tissue polymer interacting on the SNP surface. MSNPs have a larger surface area and higher surface... 82
Figure 1-15. The structure of the guanidino moiety in arginine and its interaction with water. a. Front view of the guanidino (Gd) geometry shows atom labeling according to the IUPAC convention. Geometric values (valence angles... 87
Figure 1-16. Overview of the number of a. scientific publications and b. patents related to nanocellulose and nanochitin research from 1 Jan 2000 to 20 Oct 2022. The scientific publication search was performed using the... 89
Figure 1-17. Thesis structure showing the research packages of this study. The literature review (Chapter 1) provides the context and identifies nanochitin research gaps. Main synthesis and characterization experimental tasks are set... 91
Figure 2-1. Target properties of hydrochloric acid-hydrolyzed chitin nanowhiskers (ChNWs). a. A colloidally stable aqueous ChNW suspension at 1.0 wt%, pH 4.0. a. A scanning electron microscopic image showing the needle-like... 93
Figure 2-2. a. Schematic top-down production of nanochitin through chemical and physical routes into individual nanowhiskers or nanofibers, respectively, accompanied by surface changes. b. The most common laboratory-scale... 95
Figure 2-3. Overview of chemical reactions enabling the post-surface modification of nanochitin, occurring on the amino or hydroxy group, acetamide group, and other functional groups such as carboxylic acid introduced during the... 105
Figure 2-4. Attenuated total reflectance-Fourier-transform infrared spectrum of a. shrimp shell-derived bulk α-chitin (Sigma-Aldrich C7170) compared to those of five nanochitin types including b. chitin nanowhiskers (ChNWs), c.... 109
Figure 2-5. Solid-state ¹³C nuclear magnetic resonance spectrum of bulk chitin (Sigma-Aldrich C7170) compared to those of five nanochitin types including chitin nanowhiskers (ChNWs), TEMPO [(2,2,6,6-tetramethylpiperidin-1-... 112
Figure 2-6. Scanning electron microscopic (SEM) images of five nanochitin types including a. chitin nanowhiskers (ChNWs), b. TEMPO [(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl free radical]-oxidized ChNWs (T-ChNWs),... 115
Figure 2-7. Length and width distributions of five nanochitin types including a. chitin nanowhiskers (ChNWs), b. TEMPO [(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl free radical]-oxidized ChNWs (T-ChNWs), c. zwitterionic ChNWs (Z-ChNWs), d. alkaline deacetylated ChNWs (D-ChNWs), and e. guanylated ChNWs (G-ChNWs). Nanochitin dimensions are... 116
Figure 2-8. X-ray diffractograms (XRDs) of a. bulk α-chitin (Sigma-Aldrich C7170) powder, and freeze-dried powder of five nanochitin types including b. chitin nanowhiskers (ChNWs), c. TEMPO [(2,2,6,6-... 120
Figure 2-9. Photographs of 1.0 wt% aqueous suspensions of five nanochitin types including chitin nanowhiskers (ChNWs), TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl free radical]-oxidized ChNWs (T-ChNWs), zwitterionic... 124
Figure 2-10. Representative conductometric (light gray)/potentiometric (pH, dark gray) titration curves of a. chitin nanowhisker (ChNWs), and b. deacetylated ChNWs (D-ChNWs) showing the graphical determination of equivalent... 130
Figure 2-11. Representative conductometric (light gray)/potentiometric (pH, dark gray) titration curves of a. TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl free radical]-oxidized chitin nanowhiskers (T-ChNWs), and... 132
Figure 2-12. Representative potentiometric (pH) titration curves (blue) and their first derivatives (orange) of a. deacetylated chitin nanowhiskers (D-ChNWs) and b. guanylated ChNWs (G-ChNWs) showing the graphical... 133
Figure 3-1. Schematic illustration of the preparation of nylon 66 (Ny66, gray) nanocomposite films containing cellulose nanocrystals (CNCs, blue) or deacetylated chitin nanowhiskers (D-ChNWs, orange) via a. in situ interfacial... 141
Figure 3-2. Scanning electron microscopic images of executed dumbbell-shaped test specimens, which show the difference in morphology at the grip, whitening (necking), and fractured cross-section positions (Figure 3-4 below)... 145
Figure 3-3. Variation of mechanical properties including Young's modulus (E, ■, blue), ultimate tensile strength (σ, ●, orange), and elongation at break (εb, ▲, gray) with nanofiller content of a. cellulose nanocrystal/nylon 66...[이미지참조] 147
Figure 3-4. a. Photograph and illustration of a nylon 66 film specimen after tensile testing, showing the three regions measured using scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS). SEM images of... 154
Figure 3-5. One-dimensional wide-angle X-ray diffraction patterns and peak deconvolution of a. neat nylon 66, b. in situ polymerized cellulose nanocrystal (CNC)/nylon 66 (I-NC0.4), c. in situ polymerized deacetylated chitin... 158
Figure 3-6. Two-dimensional wide-angle X-ray scattering patterns of (from top to bottom) neat nylon 66, in situ polymerized cellulose nanocrystal (CNC)/nylon 66 (I-NC0.4), in situ polymerized deacetylated chitin nanowhisker... 159
Figure 3-7. One-dimensional wide-angle X-ray scattering (1D WAXS) patterns of films of a. neat nylon 66 (Ny66), b. in situ polymerized deacetylated chitin nanowhisker (D-ChNW)/Ny66 composite (I-NS0.4), and c. solution... 160
Figure 3-8. Attenuated total reflectance-Fourier-transform infrared spectroscopy (FTIR) spectra in the 1700-1450 cm-1 range showing the amide I and II bands for a. in situ polymerized cellulose nanocrystal (CNC)/nylon 66 (I-NC),...[이미지참조] 163
Figure 3-9. Thermal properties of neat nylon 66 (Ny66) and its composite films at 0.4 wt% filler loading. Differential scanning calorimetry (DSC) of a. 1st heating and b. subsequent cooling thermograms of the films: in situ... 166
Figure 3-10. Differential scanning calorimetric (DSC) thermograms showing the (left) 1st heating runs and (right) cooling runs of a. in situ polymerized cellulose nanocrystal (CNC)/nylon 66 (I-NC), b. in situ polymerized... 167
Figure 3-11. Thermogravimetric analysis curves of a. in situ polymerized cellulose nanocrystal (CNC)/nylon 66 (I-NC), b. in situ polymerized deacetylated chitin nanowhisker (D-ChNW)/nylon 66 (I-NS), c. solution (formic... 170
Figure 3-12. Differential thermogravimetric curves of a. in situ polymerized cellulose nanocrystal (CNC)/nylon 66 (I-NC), b. in situ polymerized deacetylated chitin nanowhisker (D-ChNW)/nylon 66 (I-NS), c. solution (formic... 171
Figure 4-1. Distinguishing different classes of adhesives based on their adhesion principles and features. a. Polymeric tissue adhesives, including chitin hydrogels (Azuma et al., 2015; Pang et al., 2020; Xu et al., 2018).... 180
Figure 4-2. Schematic illustration of various tissue adhesive types and their adhesion strength ranges. Compared to physical adsorption-based nanoparticle suspension adhesives, the performance, storage, and handling of chemically... 181
Figure 4-3. Summary of nanoparticle property. a. Schematic illustrations of dimensions and surface chemistry of bioorganic and TM-50 silica nanoparticles. b. Classifying nanoparticles based on their adhesion abilities (Figure 4-5... 183
Figure 4-4. Amino acid composition (mol%) of (top) porcine skin-derived gelatin and (bottom) porcine skin, grouped based on the propensity of the residue side chain. Tyrosine (Tyr) is considered hydrophobic due to the presence of... 185
Figure 4-5. Adhesion of nanoparticles to soft, wet substrates. a. Representative photographs showing the gluing of two pieces of (left) gelatin hydrogel (23 wt%) and (right) porcine skin using 30 μL of an aqueous suspension of... 187
Figure 4-6. Representative lap shear stress-strain curves of a. gelatin, and b. porcine skin assemblies glued by aqueous suspensions of three groups (Figure 4-3b, 4-5d) of nanoparticles including TM-50 silica nanoparticles... 188
Figure 4-7. Time-dependent adhesion strength of nanoparticle suspensions. Adhesion strengths under normal conditions on a. gelatin hydrogels (23 wt%), and b. porcine skin glued with various aqueous suspensions of... 192
Figure 4-8. Correlation of surface functional group concentration and adhesion strength (τadh) of nanochitin to gelatin hydrogels (23 wt%) by varying a. the [Gd+] of N-guanidinium chitin nanowhiskers (G-ChNWs) and b. the [NH3+]...[이미지참조] 194
Figure 4-9. Dispersion of bioorganic nanoparticles under highly acidic conditions. a. Photographs of the 1.0 wt% aqueous suspensions at pH 2 at 1 h after preparation. CNCs, cellulose nanocrystals; T-ChNWs, TEMPO [(2,2,6,6-... 196
Figure 4-10. Attenuated total reflectance-Fourier-transform infrared spectra of hydrogel substrates including neutral poly(vinyl alcohol) (PVA), anionic polyacrylate (PAA), and cationic poly(allylamine hydrochloride) (PAH) used for... 200
Figure 4-11. a. Attenuated total reflectance-Fourier-transform infrared, and b. ¹H nuclear magnetic resonance spectra of methacryl guanidine hydrochloride (MAGH) monomer used for the synthesis of the guanidinium-... 201
Figure 4-12. Adhesion mechanics of bioorganic nanoparticles at the macroscopic level (bulk adhesion test). (Top) major interactions responsible for the adhesion between functional groups of the nanoparticle (blue) and the hydrogel substrate (orange), and (bottom) adhesion strength of 2 wt % suspensions of bioorganic nanoparticles including cellulose nanocrystals... 203
Figure 4-13. Representative lap shear stress-strain curves of hydrogel assemblies: a. neutral poly(vinyl alcohol) (PVA), b. anionic polyacrylate (PAA), c. cationic poly(allylamine hydrochloride) (PAH), and d. cationic... 204
Figure 4-14. Adhesion mechanics of bioorganic nanoparticles at the molecular level using surface forces apparatus. a. Schematic representation of measuring the surface adhesion showing salt bridge interactions between mica... 205
Figure 4-15. Comparing noncovalent interactions underwater. Linear scale of underwater adhesion energies per unit area in mJ m-2. The energy of the guanidinium (Gd+)-mediated salt bridge in this study is shown along with those of other motifs reported in the literature obtained under aqueous conditions using a surface forces apparatus (Table 4-3). Blue scales...[이미지참조] 209
Figure 4-16. a. Adhesion strengths of aqueous suspensions (2 wt %) of bioorganic nanoparticles including cellulose nanocrystals (CNCs, pH 4), TEMPO [(2,2,6,6-ttetramethylpiperidin-1-yl)oxyl free radical]-oxidized chitin... 211
Figure 4-17. Adhesion strengths of suspensions (2 wt%) of bioorganic nanoparticles including cellulose nanocrystals (CNCs, pH 4), TEMPO [(2,2,6,6-ttetramethylpiperidin-1-yl)oxyl free radical]-oxidized chitin nanowhiskers... 212
Figure 4-18. Wet adhesion and adsorption of nanochitin suspensions (2 wt%, pH 4) to hydrogels. a. The poly(allylamine hydrochloride) (PAH) assembly glued by the zwitterionic chitin nanowhisker (Z-ChNW) suspension... 214
Figure 4-19. Hemostatic properties of nanochitin. a-c. Hemostatic dynamics using dog blood. a. Thromboelastogram demonstrating the development of blood clots and clot strength over time and corresponding... 215
Figure 4-20. Antibacterial activities of bioorganic nanoparticles including cellulose nanocrystals (CNCs), TEMPO [(2,2,6,6-(tetramethylpiperidin-1-yl)oxyl free radical]-oxidized chitin nanowhiskers (T-ChNWs), zwitterionic... 218
Figure 4-21. In vivo biocompatibility testing of N-guanidinium chitin nanowhiskers (G-ChNWs) in a mouse model of asthma induced by ovalbumin (OVA). a. Total and OVA-specific immunoglobulin E (IgE) levels in serums. b. Eosinophil and neutrophil counts in bronchoalveolar lavage fluids (BALF). c. Total immune cell counts in the BALF. Controls... 220
Figure 4-22. In vitro degradation of N-guanidinium chitin nanowhiskers (G-ChNWs) using lysozyme at 37 ℃. a. Weight change after one-week incubation. Phosphate-buffered saline (PBS, 0.1 M, pH 7.4) without lysozyme was... 222
Figure C-1. Representative conductometric (light gray)/potentiometric (pH, dark gray) titration curves of cellulose nanocrystals (CNCs) showing the graphical determination of equivalent points. Blue indicates the equivalence point... 283
Scheme 2-1. Mechanism of acidic hydrolysis of chitin. 99
Scheme 2-2. Mechanism of acidic deacetylation of chitin nanowhiskers. 101
Scheme 2-3. Synthesis of five types of low-aspect ratio nanochitin. Nanochitin having lengths shorter than starting bulk chitin is represented by fewer repeating units. TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl free radical.... 108
Scheme 4-1. Synthesis of hydrogel substrates for macroscopic adhesion tests: a. poly(vinyl alcohol) (PVA), b. polyacrylate (PAA), c. poly(allylamine hydrochloride) (PAH), and d. poly(methacryl guanidine hydrochloride)-... 199
화석연료 기반 경제로부터 순환 생물 경제로 전환되는 과정에서 생체 고분자인 키틴은 가용성, 재생 가능성, 다기능성, 생분해성 및 생체적합성에 대한 수요를 충족한다. 키틴은 올리고머, 침상 형태의 나노결정(나노 위스커), 긴 나노섬유, 계층적자가 조립 나노섬유 등 다양한 구조적-기능적 다양성을 가진 멀티스케일 재료이다. 나노단위 키틴(나노키틴)의 고유한 구조적 특성을 유지하는 것은 차세대 재료를 구성하기 위한 필수 요소이다. 키틴의 나노화 방법은, 생성된 나노 키틴의 특성을 응용분야에 적합하게 만드는 다양한 하향식(top-down) 설계를 통해 얻는다.
본 논문은 다양한 하향식 나노화 방법 (가수분해 및 산화)과 표면 개질(탈아세틸화 및 N-구아닐화)로 얻은 각기 다른 유형의 키틴 나노위스커 (ChNW, 저종횡비의 1 차원 나노키틴)의 특성을 평가하고, 적합한 ChNW 유형을 생체모방 복합체와 조직접착제의 제조에 포함시키는 것을 목표로 한다. 모든 ChNW는 나노미터 크기의 침상 형태와 높은 결정성을 갖지만, 표면의 화학적 성질은 합성 방법에 따라 달라지며 콜로이드 수용액의 안정성에 영향을 미친다. 염산을 이용한 가수분해와 수산화나트륨을 이용한 탈아세틸화는 ChNW 의 표면에 아미노(암모늄) 기를 생성한다. 이러한 나노키틴은 산성 pH 조건에서 분산된다. TEMPO[2,2,6,6-(테트라메틸피페리딘-1-일)옥실 유리기(遊離基)]로 산화된 ChNW 의 경우 표면에 고밀도의 카르복실기(카르복실레이트)를 얻을 수 있다. 카르복실화 된 ChNW 는 양쪽성 이온물질이기 때문에 pH-적응형 분산성을 나타낸다. 탈아세틸화된 ChNWs(D-ChNWs)의 아미노기는 scandium(III) triflate 를 촉매로 구아니디노(구아니디움)로 바로 개질될 수 있으며, 생성된 구아닐화 ChNWs (G-ChNWs)는 전 pH 구간에서 콜로이드적으로 안정하다.
산성 가수분해 및 탈아세틸화를 통해 얻은 D-ChNWs 는 나노크기와, 높은 결정화도, 그리고 풍부한 아미노기로 인해 나일론 66 복합체를 제조하기 위한 나노필러로 선택되었다. 제조 방법을 바꿈으로써 (in situ 계면 중합과 포름산에서의 용액 블렌딩)나일론 매트릭스와 충전재 사이의 상호작용을 조절하여 나일론 기계적 성질을 간단히 강성(stiffness)에서 인성(toughness)으로 조정한다. 충전재 0.4 wt%를 in-situ 중합으로 포함하면 나일론이 강화되는 반면(영률이 2.6GPa 로 1.9 배 증가 및 극한 인장 강도 106MPa 로 1.7 배 증가), 충전재 0.3wt%를 용액 블렌딩하면 나일론을 104MJ m-3 로 2.1 배 강인화한다. In situ 방법에서는 D-ChNW 의 아미노 표면에 공유결합으로 그래프트 된 고분자가 계면 상호인력을 향상시키는 반면, 용액 블렌딩 방법에서는 양이온의 표면 전하가 고분자 매트릭스를 가소화한다. 자연의 키틴-단백질 복합체를 모사하는 전(全)유기(有機) 나일론 복합체는 엔지니어링 플라스틱 분야의 새로운 가능성을 보여준다.
G-ChNW 현탁액(懸濁液)은 생체 적합성, 지혈 및 항균 특성을 가진 생물 의료용 접착제로 선택되었다. G-ChNW 현탁액은 중성 pH 에서 같은 농도의 무기 나노입자보다 돼지 피부를 3000 배 더 강하게 접착하며, 이는 홍합 유래 접착제만으로는 불가능하다. G-ChNW 접착제는 완전히 젖은 표면에서 즉각적인 접착력(2 분)을 나타내며, 접착된 개체는 수중에서 1 주동안 지속된다. G-ChNW 현탁액은 점도가 낮고 안정적이므로 분무가 가능하고 보관이 용이하다. 나노역학 연구에 따르면 구아니디늄 성분은 캐오트로픽으로, 단백질과 강하고 다면적인 비공유결합 (이온성 인력 및 산성 성분과 결합하는 두 자리 수소 결합으로 이루어진 염다리(salt bridge), 방향족 성분과의 양이온-파이 결합, 그리고 소수성 상호작용)을 생성한다. 이러한 접착 매커니즘은 차세대 조직접착제에 대한 청사진을 제공한다.
요컨대, 본 연구는 생체모방 복합체 및 생체의학 접착제 엔지니어링에서 예시된 바와 같이 신소재를 설계하는 데 있어 나노키틴의 중요한 역할을 강조했다. 나노키틴의 합성 및 표면 개질 방법은 나노 키틴의 특성에 직접적인 영향을 미치며, 이는 나노키틴 기반 제품의 요구 성능 달성을 위한 중요한 요소이다. 키틴을 사용하는 것은 재료의 수요와 미래의 지속가능한 사회를 충족시키기 위한 빌딩블록으로써 재생 가능한 선택지를 제공한다.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.