본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

목차

ABBREVIATIONS 10

Abstract 13

제1장 서론 14

1.1. 농약 안전관리의 필요성 14

1.2. 잔류농약 다성분 분석법의 필요성 17

1.3. 연구 목적 및 필요성 18

제2장 이론적 배경 20

2.1. 잔류농약 다성분 분석법의 발달 과정 20

2.2. 잔류농약 분석법의 전처리 및 정제 과정 25

1) Solid-Phase Extraction(SPE) 25

2) Liquid-Liquid Extraction (LLE) 26

3) Quick, Easy, Cheap, Effective, Rugged, and Safe method (QuEChERS) 26

2.3. 질량분석기를 활용한 잔류농약 다성분 분석법 28

2.4. 잔류농약 분석법 유효성 검증 (method validation) 30

2.5. 잔류 농약 모니터링 및 노출평가 43

2.5.1. 잔류농약 모니터링 현황 43

2.5.2. 모니터링 결과에 대한 노출평가 44

2.6. 매질 효과 (matrix effect) 45

제3장 재료 및 방법 48

3.1. 표준품 및 시약 48

3.2. 시험법 검증 대상 분석 시료 48

3.3. 분석 대상 농약 49

3.4. 표준원엑 및 표준용엑의 조제 56

3.5. 분석 기기 56

3.6. 잔류농약 추출 및 정제 56

3.6.1. 실험 전 검체의 균질화 56

3.6.2. 추출 57

3.6.3. 정제 57

3.7. 기기분석 조건 59

3.7.1. 시료 주입부와 GC 온도 프로그램 59

3.7.2. 질량분석기 조건 확립 59

3.7.3. MRM mode 조건 확립 61

3.8. 시험법 검증 86

3.9. 잔류농약 모니터링 86

제4장 결과 90

4.1. 정량한계(LOQ, Limit of quantification) 90

4.2. 직선성(Linearity) 90

4.3. 정확도(Accuracy) 및 정밀도(Precision) 103

4.4. 잔류농약 모니터링 126

4.4.1. 시중 유통 농산물 구매 및 농약 잔류 실태 조사 126

4.4.2. 모니터링 결과를 토대로 노출평가 128

제5장 결론 및 고찰 131

참고문헌 142

Appendices 148

Appendix 1. AVE-LOQ-LOD-SD-RSD-ME 148

Appendix 2. Chromatogram of total ions of 359 pesticides analyzed and MS Quantitation by GC-MS/MS in MRM mode in standard solutions. 193

표목차

Table 1. Summary of parameters to be assessed for method validation 34

Table 2. Validation Criteria for LOQ 36

Table 3. Validation step for chemical test 38

Table 4. Requirements for performance verification (CAC//6 40-2003) 40

Table 5. Identification criteria for different MS techniques 42

Table 6. List of 322 pesticides 50

Table 7. Instrumental conditions for the analyses of pesticides 60

Table 8. GC-MSIMS parameters for the analysis of 322 pesticides 66

Table 9. Collected samples 88

Table 10. Correlation coefficient(R²) of GC-W/MS of 322 pesticides 91

Table 11. Average recovery(%), Limit of quantification(ng/g) and SD(%) for the GC-MS/MS method applied to coffee, potato, maize and chilli pepper samples (n=5) at spiked level (0.01 mg/kg) 104

Table 12. Pesticides frequencies, concentration, maximum residue limit in agricultural products 127

Table 13. Exposure assessment of pesticides in agricultural products 129

Table 14. Average recovery(%) and SD(%) of developed MRMs and Korean MRMs in this study 133

Table 15. Average recovery(%) and SD(%) of developed MRMs and Korean MRMs in this study 135

그림목차

Fig. 1. Analytical method for MRMs of Korean Food Standards Codex (2019) 23

Fig. 2. Procedure of QuEChERS method 27

Fig. 3. Enhancement and Suppression of slop in standard solutions by Matrix Effect 46

Fig. 4. Schematic diagram of sample preparation 58

Fig. 5. Chromatogram of total ions of 359 pesticides analyzed and Prodecure of multiple reaction monitoring (MRM) 63

Fig. 6. Chromatogram of total ions of Fenthion analyzed and Prodecure of multiple reaction monitoring (MRM) 64

Fig. 7. Schematic of MRM Transition of M.W 210 analyzed and Prodecure of multiple reaction monitoring (MRM) 65

초록보기

 The development of efficient methods for evaluating pesticide residues is essential in order to ensure the safety and quality of agricultural products since the Republic of Korea implemented the Positive List System (PLS). The objective of this research was to establish a method for the simultaneous analysis of 322 pesticide residues in fruits and vegetables (such as coffee, potato, maize, and chili pepper), using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach in combination with gas chromatography-tandem mass spectrometry (GC-MS/MS). This study introduces a robust, high-throughput GC-MS/MS method for screening the target pesticide residues in agricultural products, achieving the PLS criterion of 0.01 mg/kg LOQ. Despite some compounds not aligning with the CODEX recovery guideline, sufficient reproducibility was confirmed, attesting to the method's applicability in qualitative analyses. A health risk assessment conducted using estimated daily intake/acceptable daily intake ratios indicated low risks associated with product consumption (<0.035391%), thereby confirming their safety. This efficient method holds significant implications for the safe distribution of agricultural products, including during import inspections.