본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

초록보기

이 글은 최근 최대의 화두가 되고 있는 빅데이터가 사회과학에 어떤 함의를 갖는지를 인식론과 방법론 차원의 문제들을 중심으로 논의하고자 하였다. 이를 위해 빅데이터에 대한 연구를 ‘컴퓨터연산 과학’과 ‘데이터 추동 연구’로 특징짓고, 먼저 인식론 차원에서 지식 모델과 데이터에 대한 인식을 검토하였다. 그리고 방법론 차원에서는 빅데이터의 수집, 분석, 표현에서 제기될 수 있는 문제들을 각각 표집, 지표 구성, 시각화를 중심으로 고찰하였다. 방법론적문제들에 대한 검토는 특히 알고리즘 비판의 관점에서 이루어졌다. ‘소프트웨어 연구’, ‘비판적 알고리즘 연구’, ‘대안적 연구방법의 모색’이라는 세 가지 의미를 갖는 이 글은 마지막으로 빅데이터에 대한 ‘컴퓨터연산 사회과학’의 등장으로 패러다임의 전환이 일어나고 있는지 논하였다.

This article is to discuss what implications big data being recently of greatest interest has to social sciences, focusing on epistemological and methodological issues. It characterizes the big data research as both the ‘computational science’ and the ‘data-driven research’, and firstly addresses the model of intelligibility and the conception of data in big data researches in the epistemological level. And then, in the methodological level, it tackles the issues of big data collection, analysis, and representation, especially sampling, indexing, and visualization, respectively. Methodological issues are identified and investigated in the perspective of algorithm critique. As an exploratory work of software studies and critical algorithm studies, and a pursuit of alternative research methods, this article finally discusses whether computational social sciences of big data lead to a paradigm shift.

참고문헌 (50건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 소프트웨어 ‘페이스북’의 알고리즘 분석 행위자 네트워크 관점 소장
2 이재현(2013).『디지털 문화』. 커뮤니케이션북스. 미소장
3 Anderson, C.(2008). The End of Theory: Will the Data Deluge Makes the Scientific Method Obsolete? Edge. Online Magazine. [Online] Available: http://www.edge.org/3rd_culture/anderson08/ anderson08_index.html 미소장
4 Big Science and Big Data in Biology: From the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) Network, 1957–Present 네이버 미소장
5 Backstrom, L., Boldi, P., Rosa, M., Ugander, J., & Vigna, S. (2011). Four degrees of separation. Paper presented at the 4th ACM Internationall Conference on Web Science. 미소장
6 Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L.(2012). The role of social networks in information diffusion. Paper presented at the WWW 2012. 미소장
7 Barabási, A.-L.(2002). Linked: The new science of networks. Cambridge, MA: Perseus. 미소장
8 The Computational Turn: Thinking About the Digital Humanities 네이버 미소장
9 Berry, D. M.(2012). Understanding digital humanities. New York: Palgrave Macmillan. 미소장
10 Borgnat, P., Fleury, E., Guillaume, J.-L., Magnien, C., Robardet, C., & Scherrer, A.(2008). Evolving networks. In NATO ASI on mining massive data sets for security(pp. 198~204). Gazzada, Italy: IOS Press. 미소장
11 Structural analysis of hypertexts: identifying hierarchies and useful metrics 네이버 미소장
12 CRITICAL QUESTIONS FOR BIG DATA Provocations for a cultural, technological, and scholarly phenomenon 네이버 미소장
13 Brin, S., & Page, L.(1998). The anatomy of a large-scale hypertextual web wearch engine. Computer Networks and ISDN Systems, 30, 10 7~117. 미소장
14 Want to be on the top? Algorithmic power and the threat of invisibility on Facebook 네이버 미소장
15 Burke, M., Marlow, C., & Lento, T.(2009). Feed Me: Motivating newcomer contribution in social network sites. In The Proceedings of the 27th International Conference on Human factors in Computing Systems(pp. 945~954). Boston, MA, USA. 미소장
16 Burkholder, L.(ed.)(1992). Philosophy and the Computer. Boulder, San Francisco, & Oxford: Westview Press. 미소장
17 Scientific perspectivism: A philosopher of science’s response to the challenge of big data biology 네이버 미소장
18 Cha, M., Haddadi, H., Benevenuto, F., & Gummadi, K. P.(2010). Measuring user influence in Twitter: The Million Follower Fallacy. Paper presented at the 4th International AAAI Conference on Weblogs and Social Media. 미소장
19 Deleuze, G.(2005). Difference and Repetition(P. Patton, Trans.). New York: Continuum International Publishing. 미소장
20 Galloway, A.(2011). Are some things unrepresentable? Theory, Culture & Society, 28(7-8), 85~102. 미소장
21 Gitelman, L., & Jackson, V.(2013). Introduction. In L. Gitelman(ed.) (2013), “Raw Data” is an oxymoron(pp. 1~14). Cambridge, MA: The MIT Press. 미소장
22 Gjoka, M., Kurant, M., Butts, C. T., & Markopoulou, A.(2011). Practical recommendations on crawling online social networks. IEEE Journal on Selected Areas in Communications, 29(9), 1872~ 1892. 미소장
23 Goffey, A.(2008). Algorithm. In M. Fuller(ed.), Software studies: A lexicon(pp. 15~20). Cambridge, MA: The MIT Press. 미소장
24 Golder, S. A., Wilkinson, D. M., & Huberman, B. A.(2007). Rhythms of social interaction: Messaging within a massive online network. In C. Steinfield, B. T. Pentland, M. Ackerman, & N. Contractor(eds.), Communities and technologies 2007(pp. 41~66). London: Springer. 미소장
25 Habermas, J.(1968). Erkenntnis und Interesse. Frankfurt am Main: Suhrkamp. 미소장
26 Hayles, N. K.(2012). How we think: Digital media and contemporary technogenesis. Chicago: The University of Chicago Press. 미소장
27 Keim, D. A.(2002). Information visualization and visual data mining. IEEE Transactions on Visualization and Computing Graphics, 7(1), 100~107. 미소장
28 Kitchin, R., & Dodge, M.(2011). Code/Space: Software and everyday Life. Cambridge, MA: The MIT Press. 미소장
29 Algorithm = logic + control 네이버 미소장
30 Kuhn, T.(1962). The Structure of Scientific Revolutions. Chicago: University of Chicago Press. 미소장
31 Kwak, H., Lee, C., Park, H., & Moon, S.(2010). What is Twitter, a social network or a news media? Paper presented at the WWW 2010. 미소장
32 Deeper Inside PageRank 네이버 미소장
33 'The whole is always smaller than its parts': a digital test of Gabriel Tardes' monads. 네이버 미소장
34 Social science. Computational social science. 네이버 미소장
35 Stupid Data Miner Tricks: Overfitting the S&P 500 네이버 미소장
36 Lima, M.(2011). Visual complexity: Mapping patterns of information. New York: Princeton Architectural Press. 미소장
37 Lunenfeld, P., Burdick, A., Drucker, J., Presner, T., & Schnapp, J.(2012). Digital humanities. Cambridge, MA: The MIT Press. 미소장
38 Mackenzie, A.(2007). Protocols and the irreducible traces of embodiment: The Viterbi Algorithm and the mosaic of machine time. In R.Hassan & R. E. Purser(eds.), 24/7: Time and temporality in the network society(pp. 89~106). Stanford, CA: Stanford University Press. 미소장
39 Manovich, L.(2001). The language of new media. Cambridge, MA: The MIT Press. 미소장
40 Manovich, L.(2008). Software takes command. Licensed under a Creative Commons License. [Online] Available: http://www.software studies. com/softbook 미소장
41 Manovich, L.(2011a). What is visualisation? Visual Studies, 26(1), 36~49. 미소장
42 Manovich, L.(2011b). Trending: The promises and the challenges of big social data. In M. K. Gold(ed.), Debates in the digital humanities(pp. 46 0~475). Minneapolis, MN: The University Of Minnesota Press. 미소장
43 Rajaraman, A., Ullman, J. D., & Leskovec, J.(2012). Mining of massive datasets. Cambridge, MA: Cambridge University Press. 미소장
44 Rieder, B.(2012). What is in PageRank? A historical and conceptual investigation of a recursive status Iidex. Computational Culture, 2. Online Journal. [Online] Available: http://computationalculture. net/article/what_is_in_pagerank 미소장
45 Rieder, B.(2013). Interactive Visualization and Exploration of Network Data with Gephi. Presentation for a Workshop at the Center for Interdisciplinary Methodologies at Warwick University on May 9, 2013. 미소장
46 Schnapp, J., & Presner, P.(2009). Digital humanities manifesto 2.0. [Online] Available: http://www.humanitiesblast.com/manifesto /Manifesto_V2.pdf 미소장
47 The Landscape of Digital Humanities. 네이버 미소장
48 Washington Post(2012, August 1). Introducing the Twitter Political Index.[Online] Available: http://www.washingtonpost.com/ blogs/the-fix/post/introducing-the-twitter-political-index/2012/0 8/01/gJQAGniRPX_blog.html 미소장
49 A twenty-first century science 네이버 미소장
50 Wu, S., Hofman, J. M., Mason, W. A. & Watts, D. J.(2011). Who says what to whom on Twitter. Paper presented at the WWW 2011. 미소장