본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Contents

Prediction of CO₂ concentration via long short-term memory using environmental factors in greenhouses / Taewon Moon ; Ha Young Choi ; Dae Ho Jung ; Se Hong Chang ; Jung Eek Son 1

Abstract 1

Introduction 1

Materials and Methods 2

Results and Discussion 5

Literature Cited 8

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Comparison of postharvest quality of three hardy kiwifruit cultivars during shelf life and cold storage Chul-Woo Kim, Narae Han, Hyowon Park, Uk Lee p. 228-238

보기
Effect of preharvest Ca-chitosan application on postharvest quality of 'Garmrok' kiwifruit during cold storage H.M. Prathibhani C. Kumarihami, Gyeong Hwan Cha, Jin Gook Kim, Hong Lim Kim, Mockhee Lee, Yong-Bum Kwack, Jung Gun Cho, Joonyup Kim p. 239-248

보기
플러그 셀 크기, 셀 당 파종 립 수, 관수 간격, 양액의 EC 수준에 따른 황기의 육묘기 생육 = Growth of astragalus membranaceus during nursery period as affected by different plug tray cell size, number of seeds per cell, irrigation interval, and EC level of nutrient solution 정현우, 김혜민, 이혜리, 김현민, 황승재 p. 210-217

보기
Horticultural technology trends in the Korean seed industry Go-Eun Yu, Su-Yeon Kim, Ji-Weon Choi, Soo-Jin Kwon, Chang-Kug Kim p. 119-129

보기
Foliar application of ethinyl estradiol and progesterone affects morphological and fruit quality characteristics of strawberry cv. camarosa Mohammad Reza Kalantari, Vahid Abdossi, Forogh Mortazaeinezhad, Ahmad Reza Golparvar, Zahra Shahshahan p. 146-157

보기
Phenological characteristics of potted kumquat under protected culture Yung-Chiung Chang, Yu-Sen Chang, Iou-Zen Chen, Lian-Hsiung Lin p. 130-145

보기
절화 장미 'Lovely Lydia'의 재배 환경과 수확 후 품질과의 관계 = Relationship between cultivation environment and postharvest quality of cut rose ‘Lovely Lydia’ 이자희, 윤지원, 오상임, 이애경 p. 263-270

보기
Some factors affecting the efficiency of hybrid embryo rescue in the 'Shiranuhi' mandarin Misun Kim, Si Hyun Kim, Ho Bang Kim, Young Chul Park, Kwan Jeong Song p. 271-281

보기
Responses of vegetable seedlings grown on cylindrical paper pots or plug trays to water stress Dong Cheol Jang, Young Woo Kweon, Si Hong Kim, Dae Hoon Kim, Jea Kyung Kim, Jea Yun Heo, Il Seop Kim p. 158-168

보기
'하니원' 멜론 수확후 저장온도에 따른 품질 변화 = Changes in quality factors of ‘Honey One’ melon during storage at different temperature 이정수, 장민선, 정천순 p. 249-262

보기
소형과 수박 수직재배를 위한 지주유형 및 착과방법 = Vertical pillar type and fruit setting method for vertical cultivation of small-sized watermelon 김은정, 노솔지, 김영상, 전유민, 박성원, 김태일, 허윤선, 정택구 p. 177-186

보기
Effects of dry and wet shipping conditions on quality, vase life, and physiological responses of Chrysanthemum morifolium 'Baekma' cut flowers Yong Seung Roh, In Kyung Kim, Yong Kweon Yoo p. 218-227

보기
아스파라거스 'Atlas'의 노지 및 비가림하우스 재배에 따른 생장 특성과 생산량 = Growth characteristics and yield of asparagus ‘Atlas’ grown in an open field and rain-shelter house system 하서연, 이태헌, Rayhan Ahmed Shawon, 허북구, 김호철, 배종향, 구양규 p. 169-176

보기
Variations of bioactive compound contents and antioxidant capacity of asparagus seedlings in 23 varieties Hyang Lan Eum, Tae Gyu Yi, Sae Jin Hong, Nam-Il Park p. 291-302, [1-5]

보기
Design optimization of proportional plus derivative band parameters used in greenhouse ventilation by response surface methodology Dae-Hyun Jung, Hak-Jin Kim, Joon Yong Kim, Taek-Sung Lee, Soo Hyun Park p. 187-200

보기
Effect of tobacco mosaic virus (TMV) infection on expression and purification of therapeutic vaccine proteins in transgenic plants Chunha Shin, Ilchan Song, Yeji Lee, So-Hyeon Baek, Dae Heon Kim, Kisung Ko p. 282-290, [1]

보기
Prediction of CO2 concentration via long short-term memory using environmental factors in greenhouses Taewon Moon, Ha Young Choi, Dae Ho Jung, Se Hong Chang, Jung Eek Son p. 201-209

보기

참고문헌 (43건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, et al. (2016) TensorFlow: A system for large-scale machine learning. In Proceedings of 12th USENIX OSDI, 265-283. Savanah, GA, USA, 02-04 November 2016 미소장
2 Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv preprint arXiv:1607.06450 미소장
3 Boulard T, Kittas C, Roy JC, Wang S (2002) SE—structures and environment: Convective and ventilation transfers in greenhouses, part 2: Determination of the distributed greenhouse climate. Biosyst Eng 83:129-147. doi:10.1006/bioe.2002.0114 미소장
4 Cock JH, Yoshida S (1973) Photosynthesis, crop growth, and respiration of a tall and short rice varieties. Soil Sci Plant Nutr 19:53-59. doi:10.1080/00380768.1973.10432519 미소장
5 Davison IR (1991) Environmental effects on algal photosynthesis: Temperature. J Phycol 27:2-8. doi:10.1111/j.0022-3646.1991.00002.x 미소장
6 Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40:3031-3035. doi:10.1002/grl.50563 미소장
7 Gifford RM, Rawson HM (1994) Investigation of wild and domesticated vegetation in CO2 enriched greenhouses. In Proc. IGBP Workshop on Design and Execution of Experiments on CO2 Enrichment, Weidenberg, Germany, October 26-30, 1992 미소장
8 Goto E (2012) Plant production in a closed plant factory with artificial lighting. Acta Hortic 956:37-49. doi:10.17660/ActaHortic.2012.956.2 미소장
9 Graamans L, Baeza E, Van Den Dobbelsteen A, Tsafaras I, Stanghellini C (2018) Plant factories versus greenhouses: Comparison of resource use efficiency. Agric Syst 160:31-43. doi:10.1016/j.agsy.2017.11.003 미소장
10 Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J (2017) LSTM: A search space odyssey. IEEE Trans Neural Netw Learn Syst 28:2222-2232. doi:10.1109/TNNLS.2016.2582924 미소장
11 Han S, Kang J, Mao H, Hu Y, Li X, Li Y, Xie D, Luo H, Yao S, et al. (2017) ESE: Efficient speech recognition engine with sparse LSTM on FPGA. Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays 75-84. doi:10.1145/3020078.3021745 미소장
12 Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735-1780. doi:10.1162/neco.1997.9.8.1735 미소장
13 Hu Q, Zhang R, Zhou Y (2016) Transfer learning for short-term wind speed prediction with deep neural networks. Renew Energ 85:83-95. doi:10.1016/j.renene.2015.06.034 미소장
14 Jung DH, Kim D, Yoon HI, Moon TW, Park KS, Son JE (2016) Modeling the canopy photosynthetic rate of romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying CO2 concentrations and growth stages. Hortic Environ Biotechnol 57:487-492. doi:10.1007/s13580-016-0103-z 미소장
15 Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: A survey. Comput Electron Agric 147:70-90. doi:10.1016/j.compag.2018.02.016 미소장
16 Kaplan A, Badger MR, Berry JA (1980) Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration. Planta 149:219-226. doi:10.1007/BF00384557 미소장
17 Kingma D, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980v9 미소장
18 Kläring HP, Hauschild C, Heißner A, Bar-Yosef B (2007) Model-based control of CO2 concentration in greenhouses at ambient levels increasescu cumber yield. Agric Forest Meteorol 143:208-216. doi:10.1016/j.agrformet.2006.12.002 미소장
19 Lashof DA (1989) The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climatic change. Climatic Change 14:213-242. doi:10.1007/BF00134964 미소장
20 Special issue: features panels. 네이버 미소장
21 Linker R, Seginer I, Gutman PO (1998) Optimal CO2 control in a greenhouse modeled with neural networks. Comput Electron Agric 19:289-310. doi:10.1016/S0168-1699(98)00008-8 미소장
22 Liu Y, Racah E, Correa J, Khosrowshahi A, Lavers D, Kunkel K, Wehner M, Collins W (2016) Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv preprint arXiv:1605.01156 미소장
23 Lotfiomran N, Köhl M, Fromm J (2016) Interaction effect between elevated CO2 and fertilization on biomass, gas exchange and C/N ratio of European beech (Fagus sylvatica L.). Plants 5:38. doi:10.3390/plants5030038 미소장
24 Maroco JP, Breia E, Faria T, Pereira JS, Chaves MM (2002) Effects of long‐term exposure to elevated CO2 and N fertilization on the development of photosynthetic capacity and biomass accumulation in Quercus suber L. Plant Cell Environ 25:105-113. doi:10.1046/j.0016-8025.2001.00800.x 미소장
25 McGrath JM, Lobell DB (2013) Regional disparities in the CO2 fertilization effect and implications for crop yields. Environ Res Lett 8:014054. doi:10.1088/1748-9326/8/1/014054 미소장
26 Human-level control through deep reinforcement learning. 네이버 미소장
27 Moon T, Ahn TI, Son JE (2018a) Forecasting root-zone electrical conductivity of nutrient solutions in closed-loop soilless cultures via a recurrent neural network using environmental and cultivation information. Front Plant Sci 9:859. doi:10.3389/fpls.2018.00859 미소장
28 Moon TW, Jung DH, Chang SH, Son JE (2018b) Estimation of greenhouse CO2 concentration via an artificial neural network that uses environmental factors. Hortic Environ Biotechnol 59:45-50. doi:10.1007/s13580-018-0015-1 미소장
29 Moon T, Ahn TI, Son JE (2019) Long short-term memory for a model-free estimation of macronutrient ion concentrations of root-zone in closed-loop soilless cultures. Plant Methods 15:59. doi:10.1186/s13007-019-0443-7 미소장
30 Transient nature of CO2 fertilization in Arctic tundra 네이버 미소장
31 Oord AVD, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499 미소장
32 Roy JC, Boulard T, Kittas C, Wang S (2002) PA-Precision Agriculture: Convective and ventilation transfers in greenhouses, Part 1: The greenhouse considered as a perfectly stirred tank. Biosyst Eng 83:1-20. doi:10.1006/bioe.2002.0107 미소장
33 Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. Cognit Model 5:1 미소장
34 Rußwurm M, Körner, M (2017) Multi-temporal land cover classification with long short-term memory neural networks. Int Arch Photogramm Remote Sens Spat Inf Sci 42:551. doi:10.5194/isprs-archives-XLII-1-W1-551-2017 미소장
35 Sharma-Natu P, Khan FA, Ghildiyal MC (1998) Photosynthetic acclimation to elevated CO2 in wheat cultivars. Photosynthetica 34:537-543. doi:10.1023/A:1006809412319 미소장
36 Mastering the game of Go with deep neural networks and tree search. 네이버 미소장
37 Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In Z Ghahramani, M Welling, C Cortes, ND Lawrence, KQ Weinberger, eds, Advances in Neural Information Processing Systems, Ed 27, pp 3104-3112 미소장
38 Wang X, Gao L, Song J, Shen H (2017) Beyond frame-level CNN: Saliency-aware 3-D CNN with LSTM for video action recognition. IEEE Signal Process Lett 24:510-514. doi:10.1109/LSP.2016.2611485 미소장
39 Wen TH, Gasic M, Mrksic N, Su PH, Vandyke D, Young S (2015) Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. arXiv preprint arXiv:1508.01745. doi:10.18653/v1/D15-1199 미소장
40 William WE, Garbutt K, Bazzaz FA, Vitousek PM (1986) The response of plants to elevated CO2. Oecologia 69:454-459. doi:10.1007/BF00377068 미소장
41 Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, et al. (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 미소장
42 Zhang J, Zhu Y, Zhang X, Ye M, Yang J (2018) Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. J Hydrol 561:918-929. doi:10.1016/j.jhydrol.2018.04.065 미소장
43 Zhao F, Feng J, Zhao J, Yang W, Yan S (2018) Robust LSTM-autoencoders for face de-occlusion in the wild. IEEE Trans Image Process 27:778-790. doi:10.1109/TIP.2017.2771408 미소장