본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Contents

Effect of engine start and clutch slip losses on the energy management problem of a hybrid DCT powertrain / Enrico Galvagno ; Guido Guercioni ; Giorgio Rizzoni ; Mauro Velardocchia ; Alessandro Vigliani 1

ABSTRACT 1

NOMENCLATURE 1

1. INTRODUCTION 2

2. POWERTRAIN DESCRIPTION AND MODELING 3

2.1. Powertrain Description 3

2.2. Powertrain Model 3

3. DCT GEARSHIFT LOSSES MODELING 6

3.1. Model Overview 6

3.2. Energy Request Calculation 6

3.3. Simulation Results 7

4. ICE START LOSSES MODELING 8

4.1. Model Overview 8

4.2. ICE Start Phases 8

4.3. Energy Request Calculation 9

4.4. Simulation Results 9

5. OPTIMAL CONTROL PROBLEM FORMULATION 9

5.1. Cost Function 10

5.2. States and Constrains 10

5.3. Controls and constrains 11

6. INTRODUCTION OF GEARSHIFT AND ICE START LOSSES 12

6.1. Total Torque Request 12

6.2. Torque Request to ICE 12

6.3. Torque Request to EM 12

6.4. Introduction of Fuel Penalties 12

7. SIMULATION RESULTS 13

7.1. DP Solution 13

7.2. Effect of the Gearshift and ICE Start Losses 14

8. CONCLUSION 15

REFERENCES 16

초록보기

A Dynamic Programming (DP) formulation is developed to find the global optimal solution to the energy management of a parallel Plug-in Hybrid Electric Vehicle (PHEV) equipped with a Dual-Clutch Transmission (DCT). The effects of integrating in the DP formulation the losses accounting for gearshifts and engine starts are studied in terms of the overall fuel consumption; the optimal control solutions obtained depends on the occurrence of these transient events. These sources of dissipation are modeled through physical considerations thus enabling the DP algorithm to decide when it is more convenient, in terms of minimizing the total energy consumption, to perform either a gearshift or an engine start. This capability differentiates the DP formulation here presented from those presented in previous studies.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Method for classification of frontal collision events in passenger cars based on measurement of local component-specific decelerations André Leschke, Florian Weinert, Maximillian Obermeier, Stefan Kubica, Vincenzo Bonaiuto p. 785-794

보기
Optimization of three-wheel vehicle roof structures against rollover accidents Jesung Yoo, Hoon Huh p. 795-804

보기
Temperature analysis of wet clutch surfaces during clutch engagement processes based on friction pad patterns Jamin Kong, Siyoul Jang p. 813-822

보기
Optimized fast terminal sliding mode control for a half-car active suspension systems Ghazally Ibrahim Yousif Mustafa, Haoping Wang, Yang Tian p. 805-812

보기
Control of DPPS in vehicle using feed-forward decoupling Hao Chen, Chao Wang, Xi Chen, Xiaomin Lian p. 823-831

보기
Effect of the plasma jet ignition and flame kernel under the combustion process in a constant volume combustion chamber Mun Seok Choe, Kyung Tae Lee, Kwon Se Kim, Doo Seuk Choi p. 833-842

보기
Reduction of generated axial force by constant velocity joint using contact optimization of tripod joint Jun-Hee Wi, Kwang-Hee Lee, Chul-Hee Lee p. 855-864

보기
EGR transient operations in highly dynamic driving cycles Jose Galindo, Hector Climent, Benjamin Pla, Chaitanya Patil p. 865-879

보기
Performance of naphtha in compression ignition modes using multicomponent surrogate fuel model Wonah Park, Cheolwoong Park, Yongrae Kim, Gyubaek Cho p. 843-853

보기
Lane keeping control based on model predictive control under region of interest prediction considering vehicle motion states Zeng Li, Gaojian Cui, Shaosong Li, Niaona Zhang, Yunsheng Tian, Xiaoqiang Shang p. 1001-1011

보기
Diesel engine airpath controller via data driven disturbance observer Volkan Aran, Mustafa Unel p. 971-980

보기
Trajectory planning for automated parking systems using deep reinforcement learning Zhuo Du, Qiheng Miao, Changfu Zong p. 881-887

보기
Experimental verification of fault identification for overactuated system with a scaled-down electric vehicle Jinseong Park, Youngjin Park p. 1037-1045

보기
Trajectory planning algorithm using Gauss pseudospectral method based on vehicle-infrastructure cooperative system Yingxuan Zhu, Kegang Zhao, Haolin Li, Yanwei Liu, Quancheng Guo, Zhengtao Liang p. 889-901

보기
Integrated coordination control for distributed drive electric vehicle trajectory tracking Hongluo Li, Yutao Luo p. 1047-1060

보기
Lightweight bus body design and optimization for rollover crashworthiness Suphanut Kongwat, Pattaramon Jongpradist, Hiroshi Hasegawa p. 981-991

보기
Physical evidence of seat belt release in oblique frontal impact Sung-Woo Koh, Jae-Wan Lee p. 1029-1036

보기
Integrated stability control strategy of in-wheel motor driven electric bus Wenwei Wang, Wei Zhang, Yifan Zhao p. 919-929

보기
Collision avoidance of low speed autonomous shuttles with pedestrians Sukru Yaren Gelbal, Bilin Aksun-Guvenc, Levent Guvenc p. 903-917

보기
Effect of engine start and clutch slip losses on the energy management problem of a hybrid DCT powertrain Enrico Galvagno, Guido Guercioni, Giorgio Rizzoni, Mauro Velardocchia, Alessandro Vigliani p. 953-969

보기
Robust H∞ fault-tolerant lateral control of four-wheel-steering autonomous vehicles Jinghua Guo, Yugong Luo, Keqiang Li p. 993-1000

보기
Robust vehicle speed control using disturbance observer in hybrid electric vehicles Sangjoon Kim, Jae Sung Bang, Sungdeok Kim, Hyeongcheol Lee p. 931-942

보기
Direct yaw-moment control of electric vehicle with in-wheel motor drive system Daoyuan Liu, Song Huang, Sen Wu, Xiang Fu p. 1013-1028

보기
A study on the performance restoration of torque converters for passenger car 6-speed automatic transmissions with remanufacturing process technology Youngkyo Seo, Sungdo Hong, Dohyun Jung, Namhoon Chung p. 1061-1070

보기
Model-based control of synchronizer shifting process for trajectory tracking control Yan Zhang, Han Zhao, Mingming Qiu, Feifei Qin, Bingzhan Zhang p. 943-952

보기

참고문헌 (42건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Amisano, F., Galvagno, E., Velardocchia, M. and Vigliani, A. (2014). Automated manual transmission with a torque gap filler Part 1: Kinematic analysis and dynamic analysis. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 228, 11, 1247–1261. 미소장
2 Bellman, R. E. and Dreyfus, S. E. (2015). Applied Dynamic Programming. Princeton University Press. Princeton, New Jersey, USA. 미소장
3 Bertsekas, D. (1995). Dynamic Programming and Optimal Control. Athena Scientific. Belmont, Massachusetts, USA. 미소장
4 Bianchi, D., Rolando, L., Serrao, L., Onori, S., Rizzoni, G., Al-Khayat, N., Hsieh, T.-M. and Kang, P. (2010). A rulebased strategy for a series/parallel hybrid electric vehicle: An approach based on dynamic programming. Proc. ASME Dynamic Systems and Control Conf., Cambridge, Massachusetts, USA. 미소장
5 Böhme, T. J. and Frank, B. (2017). Hybrid Systems, Optimal Control and Hybrid Vehicles: Theory, Methods and Applications. 1st edn. Springer. Cham, Switzerland. 미소장
6 Bovee, K. M. (2015). Optimal Control of Electrified Powertrains with the Use of Drive Quality Criteria. Ph. D. Thesis. Ohio State University. Ohio, USA. 미소장
7 Boyd, S. P. and Vendenberghe, L. (2004). Convex Optimization. Cambridge University Press. Cambridge, UK. 미소장
8 Elbert, P., Nüesch, T., Ritter, A., Murgovski, N. and Guzzella, L. (2014). Engine on/off control for the energy management of a serial hybrid electric bus via convex optimization. IEEE Trans. Vehicular Technology 63, 8, 3549–3559. 미소장
9 Engbroks, L., Knappe, P., Goerke, D., Schmiedler, S., Goedecke, T. and Geringer, B. (2019). Energetic costs of ICE starts in (P)HEV – Experimental evaluation and its influence on optimization based energy management strategies. SAE Paper No. 2019-24-0203. 미소장
10 Galvagno, E., Guercioni, G. R. and Vigliani, A. (2016). Sensitivity analysis of the design parameters of a dualclutch transmission focused on NVH performance. SAE Paper No. 2016-01-1127. 미소장
11 Galvagno, E., Velardocchia, M. and Vigliani, A. (2011). Dynamic and kinematic model of a dual clutch transmission. Mechanism and Machine Theory 46, 6, 794–805. 미소장
12 Galvagno, E., Velardocchia, M. and Vigliani, A. (2018). Transient response and frequency domain analysis of an electrically variable transmission. Advances in Mechanical Engineering 10, 5, 1–12. 미소장
13 Observer-based clutch disengagement control during gear shift process of automated manual transmission 네이버 미소장
14 Guercioni, G. R. and Vigliani, A. (2019). Gearshift control strategies for hybrid electric vehicles: A comparison of powertrains equipped with automated manual transmissions and dual-clutch transmissions. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 233, 11, 2761–2779. 미소장
15 Guiggiani, M. (2014). The Science of Vehicle Dynamics:Handling, Braking, and Ride of Road and Race Cars. 1st edn. Springer. The Netherlands. 미소장
16 Guzzella, L. and Amstutz, A. (1999). CAE tools for quasistatic modeling and optimization of hybrid powertrains. IEEE Trans. Vehicular Technology 48, 6, 1762–1769. 미소장
17 Guzzella, L. and Sciarretta, A. (2013). Vehicle Propulsion Systems: Introduction to Modeling and Optimization. 3rd edn. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany. 미소장
18 Johannesson, L., Asbogard, M. and Egardt, B. (2007). Assessing the potential of predictive control for hybrid vehicle powertrains using stochastic dynamic programming. IEEE Trans. Intelligent Transportation Systems 8, 1, 71–83. 미소장
19 Khodabakhshian, M., Feng, L. and Wikander, J. (2013). Optimization of gear shifting and torque split for improved fuel efficiency and drivability of HEVs. SAE Paper No. 2013-01-1461. 미소장
20 Kim, N. and Rousseau, A. (2012). Sufficient conditions of optimal control based on Pontryagin’s minimum principle for use in hybrid electric vehicles. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 226, 9, 1160–1170. 미소장
21 Kim, N., Cha, S. and Peng, H. (2011). Optimal control of hybrid electric vehicles based on pontryagin’s minimum principle. IEEE Trans. Control Systems Technology 19, 5, 1279–1287. 미소장
22 Kirk, D. E. (1998). Optimal Control Theory – An Introduction. Dover Publications. San José, California, USA. 미소장
23 Lin, C. C., Filipi, Z., Louca, L., Peng, H., Assanis, D. and Stein, J. (2004). Modelling and control of a mediumduty hybrid electric truck. Int. J. Heavy Vehicle Systems 11, 3, 349–371. 미소장
24 Lin, C. C., Peng, H., Grizzle, J. W. and Kang, J. M. (2003). Power management strategy for a parallel hybrid electric truck. IEEE Trans. Control Systems Technology 11, 6, 839–849. 미소장
25 Ngo, V. D., Hofman, T., Steinbuch, M. and Serrarens, A. (2012a). Effect of gear shift and engine start losses on control strategies for hybrid electric vehicles. Proc. 26th Electric Vehicle Symp. and Exposition, Los Angeles, California, USA. 미소장
26 Ngo, V. D., Hofman, T., Steinbuch, M. and Serrarens, A. (2012b). Optimal control of the gearshift command for hybrid electric vehicles. IEEE Trans. Vehicular Technology 61, 8, 3531–3543. 미소장
27 Ngo, V. D., Navarrete, J. A. C., Hofman, T., Steinbuch, M. and Serrarens, A. (2013). Optimal gear shift strategies for fuel economy and driveability. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 227, 10, 1398–1413. 미소장
28 Onori, S. and Tribioli, L. (2015). Adaptive pontryagin’s minimum principle supervisory controller design for the plug-in hybrid GM chevrolet volt. Applied Energy, 147, 224–234. 미소장
29 Onori, S., Serrao, L. and Rizzoni, G. (2010). Adaptive equivalent consumption minimization strategy for hybrid electric vehicles. Proc. ASME Dynamic Systems and Control Conf., Cambridge, Massachusetts, USA. 미소장
30 Onori, S., Serrao, L. and Rizzoni, G. (2016). Hybrid Electric Vehicles: Energy Management Strategies. 1st edn. Springer-Verlag London. London, UK. 미소장
31 Opila, D. F., Wang, X., McGee, R. and Grizzle, J. W. (2012b). Real-time implementation and hardware testing of a hybrid vehicle energy management controller based on stochastic dynamic programming. J. Dynamic Systems, Measurement, and Control 135, 2, 021002. 미소장
32 Opila, D. F., Wang, X., McGee, R., Cook, J. A. and Grizzle, J. W. (2009). Performance comparison of hybrid vehicle energy management controllers on real-world drive cycle data. Proc. American Control Conf., St. Louis, Missouri, USA. 미소장
33 Opila, D. F., Wang, X., McGee, R., Gillespie, R. B., Cook, J. A. and Grizzle, J. W. (2012a). An energy management controller to optimally trade off fuel economy and drivability for hybrid vehicles. IEEE Trans. Control Systems Technology 20, 6, 1490–1505. 미소장
34 Ostertag, E. (2011). Mono- and Multivariable Control and Estimation: Linear, Quadratic and LMI Methods. 1st edn. Spriger-Verlag Berlin Heidelberg. Heidelberg, Germany. 미소장
35 Piccolo, A., Ippolito, L., Galdi, V. and Vaccaro, A. (2001). Optimisation of energy flow management in hybrid electric vehicles via genetic algorithms. Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, Como, Italy. 미소장
36 Rizzoni, G., Guzzella, L. and Baumann, B. M. (1999). Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Trans. Mechatronics 4, 3, 246–257. 미소장
37 Evolution 네이버 미소장
38 Sciarretta, A., Back, M. and Guzzella, L. (2004). Optimal control of parallel hybrid electric vehicles. IEEE Trans. Control Systems Technology 12, 3, 352–363. 미소장
39 Serrao, L., Onori, S. and Rizzoni, G. (2011). A comparative analysis of energy management strategies for hybrid electric vehicles. J. Dynamic Systems, Measurement, and Control 133, 3, 31012. 미소장
40 Sundström, O. and Guzzella, L. (2009). A generic dynamic programming matlab function. Proc. IEEE Int. Conf. Control Applications, St. Petersburg, Russia. 미소장
41 Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation 네이버 미소장
42 Waschl, H., Kolmanovsky, I., Steinbuch, M. and del Re, L. (2014). Optimization and Optimal Control in Automotive Systems. 1st edn. Springer. London, UK. 미소장