본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

초록보기

The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) as an international health emergency. Current diagnostic tests are based on the reverse transcriptionquantitative polymerase chain reaction (RT-qPCR) method, which is the gold standard test that involves the amplification of viral RNA. However, the RT-qPCR assay has limitations in terms of sensitivity and quantification. In this study, we tested both qPCR and droplet digital PCR (ddPCR) to detect low amounts of viral RNA. The cycle threshold (CT) of the viral RNA by RT-PCR significantly varied according to the sequences of the primer and probe sets with in vitro transcript (IVT) RNA or viral RNA as templates, whereas the copy number of the viral RNA by ddPCR was effectively quantified with IVT RNA, cultured viral RNA, and RNA from clinical samples. Furthermore, the clinical samples were assayed via both methods, and the sensitivity of the ddPCR was determined to be equal to or more than that of the RT-qPCR. However, the ddPCR assay is more suitable for determining the copy number of reference materials. These findings suggest that the qPCR assay with the ddPCR defined reference materials could be used as a highly sensitive and compatible diagnostic method for viral RNA detection.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Trends in monoclonal antibody production using various bioreactor systems I. Jyothilekshmi, N.S. Jayaprakash p. 349-357

Comparison of digital PCR and quantitative PCR with various SARS-CoV-2 primer-probe sets Changwoo Park, Jina Lee, Zohaib ul Hassan, Keun Bon Ku, Seong-Jun Kim, Hong Gi Kim, Edmond Changkyun Park, Gun-Soo Park, Daeui Park, Seung-Hwa Baek ... [et al.] p. 358-367

Clinical effect of traditional Chinese medicine shenhuang granule in critically ill patients with COVID-19 : a single-centered, retrospective, observational study Jun Feng, Bangjiang Fang, Daixing Zhou, Junshuai Wang, Dengxiu Zou, Gang Yu, Yikuan Fen, Dan Peng, Jifa Hu, Daqian Zhan p. 380-386

Production of algal biomass and high-value compounds mediated by interaction of microalgal Oocystis sp. KNUA044 and bacterium Sphingomonas KNU100 Ho Na, Seung-Woo Jo, Jeong-Mi Do, Il-Sup Kim, Ho-Sung Yoon p. 387-397

Biological inoculant of salt-tolerant bacteria for plant growth stimulation under different saline soil conditions Ru Wang, Chen Wang, Qing Feng, Rey-May Liou, Ying-Feng Lin p. 398-407

Diversity and plant growth promotion of fungal endophytes in five halophytes from the Buan salt marsh Irina Khalmuratova, Doo-Ho Choi, Hyeok-Jun Yoon, Tae-Myung Yoon, Jong-Guk Kim p. 408-418

Immobilization of GH78 α-L-rhamnosidase from Thermotoga petrophilea with high-temperature-resistant magnetic particles Fe3O4-SiO2-NH2-Cellu-ZIF8 and its application in the production of prunin form naringin Jin Xu, Xuejia Shi, Xiaomeng Zhang, Zhenzhong Wang, Wei Xiao, Linguo Zhao p. 419-428

Effect of pH buffer and carbon metabolism on the yield and mechanical properties of bacterial cellulose produced by Komagataeibacter hansenii ATCC 53582 Zhaofeng Li, Si-Qian Chen, Xiao Cao, Lin Li, Jie Zhu, Hongpeng Yu p. 429-438

Genetic background behind the amino acid profiles of fermented soybeans produced by four Bacillus spp. Mihyun Jang, Do-Won Jeong, Ganghun Heo, Haram Kong, Cheong-Tae Kim, Jong-Hoon Lee p. 447-455

Improvement of unsaturated fatty acid production from Porphyridium cruentum using a two-phase culture system in a photobioreactor with light-emitting diodes (LEDs) So Hee Kim, Ui Hun Lee, Sang Baek Lee, Gwi-Taek Jeong, Sung-Koo Kim p. 456-463

Enzymatic characterization and comparison of two steroid hydroxylases CYP154C3-1 and CYP154C3-2 from streptomyces species Pradeep Subedi, Ki-Hwa Kim, Young-Soo Hong, Joo-Ho Lee, Tae-Jin Oh p. 464-474

Effects of Hahella chejuensis-derived prodigiosin on UV-induced ROS production, inflammation and cytotoxicity in HaCaT human skin keratinocytes Jieun Lee, Hyun Ju Kim, Sang Jun Lee, Moo-Seung Lee p. 475-482

Identification and characterization of a novel thermostable GDSL-type lipase from Geobacillus thermocatenulatus Eunhye Jo, Jihye Kim, Areum Lee, Keumok Moon, Jaeho Cha p. 483-491

Increased risk of severe gastric symptoms by virulence factors vacAs1c, alpA, babA2, and hopZ in Helicobacter pylori infection Dong-Hae Lee, Jong-Hun Ha, Jeong-Ih Shin, Kyu-Min Kim, Jeong-gyu Choi, Seorin Park, Jin-Sik Park, Ji-Hyeun Seo, Ji-Shook Park, Min-Kyoung Shin ... [et al.] p. 368-379

Removal of salmonella typhimurium biofilm from food contact surfaces using quercus infectoria gall extract in combination with a surfactant Peetitas Damrongsaktrakul, Songsirin Ruengvisesh, Arewan Rahothan, Nuttamon Sukhumrat, Pravate Tuitemwong, Isaratat Phung-on p. 439-446

참고문헌 (61건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 2015. WHO | Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. WHO. 미소장
2 Fung TS, Liu DX 2019. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 73: 529-557. 미소장
3 Li W, Wong S-K, Li F, Kuhn JH, Huang I-C, Choe H, et al. 2006. Animal origins of the severe acute respiratory syndrome coronavirus:insight from ACE2-S-protein interactions. J. Virol. 80: 4211-4219. 미소장
4 Wu K, Peng G, Wilken M, Geraghty RJ, Li F 2012. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J. Biol. Chem. 287: 8904-8911. 미소장
5 Ge XY, Li JL, Yang X Lou, Chmura AA, Zhu G, Epstein JH, et al. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503: 535-538. 미소장
6 WHO | Middle East respiratory syndrome coronavirus (MERS-CoV). https://www.who.int/emergencies/mers-cov/en/. 미소장
7 Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA 2020. Insights into the recent 2019 novel coronavirus (Sars-coV-2) in light of past human coronavirus outbreaks. Pathogens 9: 186. 미소장
8 World Health Organization (WHO) 2020. Novel Coronavirus ( 2019-nCoV ) Situation Report - 1 21 January 2020. WHO Bull. 1-7. 미소장
9 Coronaviridae Study Group of the international committee on taxonomy of viruses 2020. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5: 536-544. 미소장
10 da Costa VG, Moreli ML, Saivish MV 2020. The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century. Arch. Virol. 165: 1517-1526. 미소장
11 Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. 2011. High-Throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83: 8604-8610. 미소장
12 Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. 2013. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10: 1003-1005. 미소장
13 Kinloch NN, Ritchie G, Brumme CJ, Dong W, Dong W, Lawson T, et al. 2020. Suboptimal biological sampling as a probable cause of false-negative COVID-19 diagnostic test results. J. Infect. Dis. 222: 899-902. 미소장
14 Alteri C, Cento V, Antonello M, Colagrossi L, Merli M, Ughi N, et al. 2020. Detection and quantification of SARS-CoV-2 by droplet digital PCR in real-time PCR negative nasopharyngeal swabs from suspected COVID-19 patients. PLoS One 15: e0236311. 미소장
15 Falzone L, Musso N, Gattuso G, Bongiorno D, Palermo CI, Scalia G, et al. 2020. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int. J. Mol. Med. 46: 957-964. 미소장
16 Suo T, Liu X, Feng J, Guo M, Hu W, Guo D, et al. 2020. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg. Microbes Infect. 9: 1259-1268. 미소장
17 Dang Y, Liu N, Tan C, Feng Y, Yuan X, Fan D 2020. Comparison of qualitative and quantitative analyses of COVID-19 clinical samples. Clin. Chim. Acta J. 510: 613-616. 미소장
18 Dong L, Zhou J, Niu C, Wang Q, Pan Y, Sheng S, et al. 2020. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta 224: 121726. 미소장
19 Lu R, Wang J, Li M, Wang Y, Dong J, Cai W 2020. SARS-CoV-2 detection using digital PCR for COVID-19 diagnosis, treatment monitoring and criteria for discharge. medRxiv. 2020.03.24.20042689. 미소장
20 Gonzalez R, Curtis K, Bivins A, Bibby K, Weir MH, Yetka K, et al. 2020. COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology. Water Res. 186: 116296. 미소장
21 Chang L, Yan Y, Zhao L, Hu G, Deng L, Su D, et al. 2020. No evidence of SARS-CoV-2 RNA among blood donors: a multicenter study in Hubei, China. Transfusion 60: 2038-2046. 미소장
22 Ahmed W, Bertsch PM, Angel N, Bibby K, Bivins A, Dierens L, et al. 2020. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. J. Travel Med. 27: 1-11. 미소장
23 Mostafa HH, Hardick J, Morehead E, Miller J, Gaydos CA, Manabe YC 2020. Comparison of the analytical sensitivity of seven commonly used commercial SARS-CoV-2 automated molecular assays. J. Clin. Virol. J. 130: 104578. 미소장
24 Lv J, Yang J, Xue J, Zhu P, Liu L, Li S 2020. Detection of SARS-CoV-2 RNA residue on object surfaces in nucleic acid testing laboratory using droplet digital PCR. Sci. Total Environ. 742: 140370. 미소장
25 Whale AS, Jones GM, Pavšič J, Dreo T, Redshaw N, Akyurek S, et al. 2018. Assessment of digital PCR as a primary reference measurement procedure to support advances in precision medicine. Clin. Chem. 64: 1296-1307. 미소장
26 Bhat S, Emslie KR 2016. Digital polymerase chain reaction for characterisation of DNA reference materials. Biomol. Detect. Quantif. 10: 47-49. 미소장
27 Kwon HJ, Jeong JS, Bae YK, Choi K, Yang I 2019. Stable isotope labeled DNA: a new strategy for the quantification of total dna using liquid chromatography-mass spectrometry. Anal. Chem. 91: 3936-3943. 미소장
28 Yoo HB, Park SR, Dong L, Wang J, Sui Z, Pavsic J, et al. 2016. International comparison of enumeration-based quantification of DNA copy-concentration using flow cytometric counting and digital polymerase chain reaction. Anal. Chem. 88: 12169-12176. 미소장
29 Corbisier P, Vincent S, Schimmel H, Kortekaas A-M, Trapmann S, Burns M, et al. 2012. CCQM-K86/P113.1: relative quantification of genomic DNA fragments extracted from a biological tissue. Metrologia 49: 08002-08002. 미소장
30 Miotke L, Lau BT, Rumma RT, Ji HP 2014. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal. Chem. 86: 2618-2624. 미소장
31 Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, et al. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84: 1003-1011. 미소장
32 Martinez-Hernandez F, Garcia-Heredia I, Gomez ML, Maestre-Carballa L, Martínez JM, Martinez-Garcia M 2019. Droplet digital PCR for estimating absolute abundances of widespread pelagibacter viruses. Front. Microbiol. 10: 1226. 미소장
33 Americo JL, Earl PL, Moss B 2017. Droplet digital PCR for rapid enumeration of viral genomes and particles from cells and animals infected with orthopoxviruses. Virology 511: 19-22. 미소장
34 Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, et al. 2013. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J. Clin. Microbiol. 51: 540-546. 미소장
35 Fronhoffs S, Totzke G, Stier S, Wernert N, Rothe M, Brüning T, et al. 2002. A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Mol. Cell. Probes 16: 99-110. 미소장
36 Kim DW, Kim YJ, Park SH, Yun MR, Yang JS, Kang HJ, et al. 2016. Variations in spike glycoprotein gene of MERS-coV, South Korea, 2015. Emerg. Infect. Dis. 22: 100-104. 미소장
37 Jung Y, Park G-S, Moon JH, Ku KB, Beak S-H, Lee C-S, et al. 2020. Comparative analysis of primer-probe sets for RT-qPCR of COVID-19 causative virus (SARS-CoV-2). ACS Infect. Dis. 6: 2513-2523. 미소장
38 Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, et al. 2012. Detection of a novel human coronavirus by realtime reverse-transcription polymerase chain reaction. Euro. Surveill. 17: 20285. 미소장
39 Vijgen L, Keyaerts E, Moës E, Maes P, Duson G, Van Ranst M 2005. Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J. Clin. Microbiol. 43: 5452-5456. 미소장
40 BioRad 2015. Rare mutation detection best practices guidelines. 미소장
41 Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. 2020. Detection of 2019 novel coronavirus (2019-nCoV)by real-time RT-PCR. Euro. Surveil. 25: 2000045. 미소장
42 Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature 579: 265-269. 미소장
43 Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273. 미소장
44 Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D 2020. Structure, Function, and antigenicity of the SARS-CoV-2Spike Glycoprotein. Cell 181:281-292. 미소장
45 Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 1260-1263. 미소장
46 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382: 727-733. 미소장
47 Winter AK, Hegde ST 2020. The important role of serology for COVID-19 control. Lancet Infect. Dis. 20:758-759. 미소장
48 Lu R, Wu X, Wan Z, Li Y, Jin X, Zhang C 2020. A novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Int. J. Mol. Sci. 21: 2826. 미소장
49 Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. 2020. Detection of 2019 novel coronavirus (2019-nCoV)by real-time RT-PCR. Euro Surveill. 25: 2000045. 미소장
50 Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y, et al. 2020. Molecular diagnosis of a novel Coronavirus (2019-nCoV)causing an outbreak of pneumonia. Clin. Chem. 66: 549-555. 미소장
51 Bustin, S. A. 2020. RT-qPCR testing of SARS-CoV-2 : a primer. Int. J. Mol. Sci. 21: 3004. 미소장
52 Li H, Bai R, Zhao Z, Tao L, Ma M, Ji Z, et al. 2018. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 38: BSR20181170. 미소장
53 Dobnik D, Kogovšek P, Jakomin T, Košir N, Žnidarič MT, Leskovec M, et al. 2019. Accurate quantification and characterization of adeno-associated viral vectors. Front. Microbiol. 10: 1570. 미소장
54 Abachin E, Convers S, Falque S, Esson R, Mallet L, Nougarede N 2018. Comparison of reverse-transcriptase qPCR and droplet digital PCR for the quantification of dengue virus nucleic acid. Biologicals 52: 49-54. 미소장
55 Kiselinova M, Pasternak AO, De Spiegelaere W, Vogelaers D, Berkhout B, Vandekerckhove L 2014. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS One 9: e85999. 미소장
56 Yu F, Yan L, Wang N, Yang S, Wang L, Tang Y, et al. 2020. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clin. Infect. Dis. 71: 793-798. 미소장
57 Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H 2020. The architecture of SARS-CoV-2 transcriptome. Cell 181: 914-921. 미소장
58 Adamski MG, Gumann P, Baird AE 2014. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity. PLoS One 9: e103917. 미소장
59 Gutiérrez-Aguirre I, Rački N, Dreo T, Ravnikar M 2015. Droplet digital PCR for absolute quantification of pathogens. Methods Mol. Biol. 1302: 331-347. 미소장
60 Coronavirus Standards Working Group — The Joint Initiative for Metrology in Biology. https://jimb.stanford.edu/covid-19-standards. 미소장
61 ISO - COVID-19 response: freely available ISO standards. https://www.iso.org/covid19. 미소장