본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Contents

Blast response simulation of the alfred murrah building reinforced by use of HPFRCC / Jae-Wook Jung ; Jung-Wuk Hong 1

Abstract 1

1. Introduction 1

2. Material Plasticity 2

3. Blast Wave 4

4. Numerical Model 4

5. Numerical Results 6

6. Conclusions 8

Authors' contributions 16

Authors' information 16

Author details 16

References 16

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Preparation of self-healing additives for concrete via miniemulsion polymerization : formulation and production challenges Shima Taheri, Simon Martin Clark p. 1-15

보기
Evaluation on the bond capacity of the fire-protected FRP bonded to concrete under high temperature Soo‑yeon Seo, Jong‑wook Lim, Su‑hyun Jeong p. 1-24

보기
Investigation of diagonal strut actions in masonry-infilled reinforced concrete frames Seung‑Jae Lee, Tae‑Sung Eom, Eunjong Yu p. 1-14

보기
Blast response simulation of the alfred murrah building reinforced by use of HPFRCC Jae-Wook Jung, Jung-Wuk Hong p. 1-16

보기
Estimating a seismic wave velocity for exciting the greatest anticipated vertical deck displacement of a cable-stayed bridge subjected to asynchronous excitation Bashar Hariri, Lan Lin p. 1-17

보기
Hydration model and evaluation of the properties of calcined hwangtoh binary blends Han‑Seung Lee, Xiao‑Yong Wang p. 1-15

보기
Time-dependent analysis of precast segmental bridges Gian Felice Giaccu, Davide Solinas, Bruno Briseghella, Luigi Fenu p. 1-21

보기

참고문헌 (22건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Bathe, K.-J. (2006). Finite element procedures. Klaus-Jurgen Bathe. 미소장
2 Caverzan, A., Cadoni, E., & Di Prisco, M. (2012). Tensile behaviour of high performance fbre-reinforced cementitious composites at high strain rates. International Journal Of Impact Engineering, 45, 28–38. https://doi. org/10.1016/j.ijimpeng.2012.01.006. 미소장
3 CEB-FIP, M. C. (1990). Design code. Comite Euro International du Beton, 51–59. 미소장
4 Choi, W.-C., Yun, H.-D., Cho, C.-G., & Feo, L. (2014a). Attempts to apply high performance fber-reinforced cement composite (HPFRCC) to infrastruc‑tures in South Korea. Composite Structures, 109, 211–223. https://doi. org/10.1016/j.compstruct.2013.10.027. 미소장
5 Choi, Y.-W., Choi, B.-K., Park, M.-S., & Sung, D. (2014). A study on the rheology properties for development of sprayed high performance fber reinforced cementitious composites for protection and blast resistant. Journal of the Korean Recycled Construction Resources Institute, 2(3), 188–195. https://doi. org/https://doi.org/10.14190/JRCR.2014.2.3.188 미소장
6 Corley, W. G., Sozen, M. A., Thornton, C. H., & Mlakar, P. F. (1996). The Oklahoma City bombing: Improving building performance through multi-hazard mitigation. Federal Emergency Management Agency Mitigation Directorate, FEMA Report (Vol. 277). 미소장
7 Cranz, C. (1917). Lehrbuch der ballistik (Vol. 2). Pипoл Клaccик. 미소장
8 Hallquist, J. O. (2007). LS-DYNA keyword user’s manual. Livermore Software Technology Corporation (Vol. 970). 미소장
9 Hopkinson, B. (1915). British ordnance board minutes 13565. The National Archives (Vol. 13565). Kew, UK. 미소장
10 Jung, J.-W., Yoon, Y.-C., Jang, H. W., & Hong, J.-W. (2019). Investigation on the resistance of steel-plate concrete walls under high-velocity impact. Journal of Constructional Steel Research, 162, 105732. 미소장
11 Kazemi-Moghaddam, A., & Sasani, M. (2015). Progressive collapse evalua‑tion of Murrah Federal Building following sudden loss of column G20. Engineering Structures, 89, 162–171. https://doi.org/10.1016/j.engst ruct.2015.02.003. 미소장
12 Khosravani, M. R., Nasiri, S., Anders, D., & Weinberg, K. (2019). Prediction of dynamic properties of ultra-high performance concrete by an artifcial intelligence approach. Advances in Engineering Software, 127, 51–58. 미소장
13 Kingery, C N, & Pannill, B. F. (1964). Peak overpressure vs scaled distance for TNT surface bursts (hemispherical charges). ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD. 미소장
14 Kingery, Charles N. (1966). Air blast parameters versus distance for hemispherical TNT surface bursts. ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD. 미소장
15 Kosa, K., Naaman, A. E., & Hansen, W. (1991). Durability of fber reinforced mortar. Materials Journal, 88(3), 310–319. 미소장
16 Murray, Y. D. (2007). Users manual for LS-DYNA concrete material model 159. 미소장
17 Ren, L., Yu, X., He, Y., Wang, K., & Yao, H. (2020). Numerical investigation of lateral inertia efect in dynamic impact testing of UHPC using a Split-Hopkinson pressure bar. Construction and Building Materials, 246, 118483. 미소장
18 Simo, J. C., & Ju, J. W. (1987). Strain-and stress-based continuum damage models—II. Computational aspects. International journal of solids and structures, 23(7), 841–869. 미소장
19 Tran, T. K., & Kim, D. J. (2014). High strain rate efects on direct tensile behavior of high performance fber reinforced cementitious composites. Cement and Concrete Composites, 45, 186–200. https://doi.org/10.1016/j.cemco ncomp.2013.10.005. 미소장
20 U.S. Department of Defense. (2008). Structures to resist the efects of accidental explosions. UFC 3–340–02. 미소장
21 Yin, H., Shirai, K., & Teo, W. (2019). Numerical simulation of the blast-resistant response of ultrahigh-performance concrete structural members. Journal of Civil Engineering and Management, 25(6), 587–598. 미소장
22 Yin, H., Shirai, K., & Teo, W. (2019). Finite element modelling to predict the fex‑ural behaviour of ultra-high performance concrete members. Engineering Structures, 183, 741–755. 미소장