본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

비대칭-비정상 변동성 모형 평가를 위한 모수적-붓스트랩 = Asymmetric and non-stationary GARCH(1, 1) models : parametric bootstrap to evaluate forecasting performance / 최선우 ; 윤재은 ; 이성덕 ; 황선영 1

Abstract 1

1. 서론 1

2. 비대칭 및 비정상 GARCH(1, 1) 모형 2

3. 모수적 붓스트랩 4

4. 모수적 붓스트랩을 통한 비대칭-비정상 시계열 예측력 비교 : 미국 다우지수 4

4.1. 다우지수분석 : 2014년 1월 2일 - 2017년 12월 29일(1007개 일별 종가 데이터) 4

4.2. 구간 2015.01.02부터 2017.12.29까지의 755개 일별 종가 데이터 분석 6

5. 결론 10

References 10

요약 12

참고문헌 (16건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Andersen TG, Davis RA, Kreiss JP, and Mikosch T (2009). Handbook of Financial Time series, Springer, Berlin. 미소장
2 Bollerslev T (1986). Generalized autoregressive conditional heteroskedasticity, em Journal of Econometrics, 31, 307–327. 미소장
3 Choi MS, Park JA, and Hwang SY (2012). Asymmetric GARCH processes featuring both threshold effect and bilinear structure, Statistics & Probability Letters, 82, 419–426. 미소장
4 Choi SW, Hwang SY, and Lee SD (2020). Volatility-nonstationary GARCH(1; 1) models featuring thresholdasymmetry and power transformation, Korean Journal of Applied Statistics, 33, 713–722. 미소장
5 Chung SA, and Hwang SY (2017). A profile Godambe information of power transformations for ARCH time series, Communications in Statistics : Theory and Methods, 46, 6899–6908. 미소장
6 Glosten LR, Jagannathan R, and Runkle DE (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance, 48, 1779–1801. 미소장
7 Hwang SY (2016). A recent overview on financial and special time series models, Korean Journal of Applied Statistics, 29, 1–12. 미소장
8 Hwang SY and Basawa IV (2004). Stationarity and moment structure for Box-Cox transformed threshold GARCH(1; 1)processes, Statistics & Probability Letters, 68, 209–220. 미소장
9 Hwang SY, Baek JS, Park JA, and Choi MS (2010). Explosive volatilities for threshold-GARCH processes generated by asymmetric innovations, Statistics & Probability Letters, 80, 26–33. 미소장
10 Kim JY, and Hwang SY (2018). A threshold-asymmetric realized volatility for high frequency financial time series, Korean Journal of Applied Statistics, 31, 205–216. 미소장
11 Kim DR, and Hwang SY (2020). Forecasting evaluation via parametric bootstrap for threshold-INARCH models, Communications for Statistical Applications and Methods, 27, 177–187. 미소장
12 Miguel JA and Olave P (1999). Bootstrapping forecast intervals in ARCH models, TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 8, 345—364. 미소장
13 Park JA, Baek JS, and Hwang SY (2009). Persistent threshold-GARCH processes: Model and application, Statistics & Probability Letters, 79, 907–914. 미소장
14 Rabemananjara R, and Zakoian JM (1993). Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, 8, 31–49. 미소장
15 Terasvirta T (2009). An introduction to univariate GARCH models, In: Mikosch T, Kreiß JP, Davis R, Andersen T (ed.) Handbook of Financial Time Series, 17–42, Springer, Berlin, Heidelberg. 미소장
16 Tsay RS (2010). Analysis of Financial Time Series(3rd ed.), Wiley, New York. 미소장