권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
전기차 충전설비에 있어서 도로교통량 데이터를 기반으로 한 충전수요예측 모델 연구 = A study on the charging demand forecasting model for electric vehicle charging station based on road traffic data / 최황규 ; 김광호 1
Abstract 1
1. 서론 1
2. 본론 2
2.1. 고속도로 교통량 및 휴게소 충전량 분석 2
2.2. LSTM 모델을 이용한 전기충전설비 주변도로 교통량 예측 3
2.3. 도로 교통량 기반의 전기차 충전수요 예측 4
4. 결론 6
References 6
Biography 6
In order to efficiently build and operate an electric vehicle charging infrastructure in response to the rapidly increasing electric vehicles, it is necessary to accurately predict the electric vehicle charging demand. In this study, we set the road traffic as a major factor in determining electric vehicle charging demand and propose the electric vehicle charging demand forecasting model based on the road traffic.
The proposed model suggested in this research primarily predicts the traffic volume of the neighboring area, especially adjacent roads where the charging station is located, and estimates the number of electric vehicles and their charging demand by using the relevant electric vehicle statistics and the historical charging data. As a result of simulated verification of the proposed model for the expressway rest area (Jukam rest area, Seoul direction), it shows an accuracy of 2-3% and is expected to be used as one of the traffic-based models in predicting electric vehicle charging demand.
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | Carbon Neutral Committee, “2050 Carbon Neutral Senario in Korea,” 1st Edition, 2050 Carbon Neutral Committee, Korea, 2021. | 미소장 |
2 | Seong-U Bae and Dong-Yeong Im, “Reviews of Eletric Vehicle Charging Power Demand Forecasting Researches,”KIEE Magazine, The Korean Institute of Electrical Engineers, Vol. 66, No. 12, pp. 40-49, 2017. | 미소장 |
3 | C. Olah, “Understanding LSTM Networks,” Colah’s blog, https://colah.github.io/posts/2015-08-Understanding-LST Ms, 2015. | 미소장 |
4 | H. C. Chung et al., “Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy,”Journal of Institute of Korean Electrical and Electronics Engineers, Vol. 23, No. 1, pp. 134-142, 2019. | 미소장 |
5 | K.H. Kim, B. Chang, and H.K. Choi, “Deep Learning Based Short-term Electric Load Forecasting Models using One-Hot Encoding,” Journal of Institute of Korean Electrical and Electronics Engineers, Vol. 23, No. 3, pp. 852-857, 2019. | 미소장 |
6 | Minstry of Trade, Industry and Energy, “EV Charging System Contributing to Grid Integrated Self-propelled Smart ESS, Research Report of 2018 Promotion of Regional Economic Zone Industry Program,” Minstry of Trade, Industry and Energy, 2021. | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내09
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.