본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

초록보기

전자우편(e-mail)은 상용화된 이래 스팸 메일을 올바르고 정확하게 분류하는 문제는 오랫동안 학계 및 보안업계의 큰 문제였다. 그동안 수많은 방법들이 논의되었으며, 필터 기반의 형태소 분석과 의미 분석에 대한 응용연구가 활발히 수행되면서 스팸 필터링 방법이 상당 부분 진전되었다. 하지만 여전히 해당 방법은 사람과 동일한 수준의 분류를 수행하는 데에는 도달하지 못하고 있다. 본 논문에서는 규칙기반의 스팸 필터 방법을 결합하여 안전성을 유지하면서 규칙기반 스팸 필터에서 차단하지 못하는 새로운 패턴의 스팸메일에 대하여 추가적인 BiLSTM(Bidirectional Long Short-Term Memory) 필터를 적용하여 스팸메일 필터링의 정확도를 높이는 방법을 제안한다.

Since e-mail has been commercialized, the problem of correctly and accurately classifying spam has long been a concern in academia and the security industry. In the meantime, many methods have been discussed, and significant progress has been made in spam filtering as filter-based, especially, applied research on stemming analyzers and semantic analysis have been actively conducted. However, it still has not reached the same level of classification as humans. In this paper, we propose a text-based spam filtering method based on BiLSTM (Bidirectional Long Short-Term Memory) combining the existing rule-based spam filtering method.

참고문헌 (20건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Statista Research Department, (2021, Mar, 19), Number of e-mail users worldwide from 2017 to 2025 [Online]. Available:https://www.statista.com/statistics/255080/numberof-e-mail-users-worldwide/ 미소장
2 MIC, KISA “2007스팸메일 차단 솔루션활용 가이드”정보통신부,정보보호진흥원, https://spam.kisa.or.kr/customer/sub2_R.do?board No=105 미소장
3 권영관, 스팸메일 현황과 대응에 대한 고찰, 정보보호학회지, 4월, 2007 미소장
4 Mark Guntrip, (July 18, 2018). FBI Reports $12.5Billion in Global Financial Losses Due to Business Email Compromise and Email Account Compromise. [Online]. Available:https://www.proofpoint.com/us/corporate-blog/po st/fbi-reports-125-billion-global-financial-losses-due-b usiness-email-compromise 미소장
5 SCAMWATCH, (2022, Mar 2). Scam statistics [Online]: Available:https://www.scamwatch.gov.au/scam-statistics?sca mid=all (About Monthly Updated) 미소장
6 W. Cohen, “Learning Rules that Classify E-mail,”AAAI Spring Symp on Machine Learning in Information Access, Vol. 18. 1996, pp.18-25. 미소장
7 A. Niimi et al, “Evaluation of Bayesian Spam Filter and SVM Spam Filter”, 2015. 미소장
8 T. Mikolov et al. "Recurrent neural network based language model." Proc. Interspeech. 2010 미소장
9 S. Hochreiter, and J. Schmidhuber. "Long Short-TermMemory." Neural Computation. vol. 9, no.8, 1997, pp. 1735-1780 미소장
10 G. F. Cooper and E. Herskovits, "A Bayesian Method for the Induction of Probabilistic Networks from Data," Journal of Machine Learning, vol. 9, no. 4, 1974, pp. 309-347 미소장
11 M. RAZA et al, “A Comprehensive Review on Email Spam Classification using Machine Learning Algorithms“, Proc. IEEE ICOIN, Conf, 2021, pp.327-332. 미소장
12 H. Cho, G. Jo, “Spam-mail Filtering System Using Navie Bayesian Classifier and Message Rule“, Proc. of KIISE, pp. 223-225, 2002. (in Korean) 미소장
13 T. Joachims, “Text categorization with support vector machine”: Learning with many relvant feature,“ In European Conf. Machine Learning, 1998, pp. 137-142 미소장
14 S. Isik, “Spam E-mail Classification Recurrent Neural Networks for Spam E-mail Classification on an Agglutinative Language”, International Journal of Intelligent Systems and Applications in Engineering, vol.8, no.4, 2020, pp. 221-227 미소장
15 Y. Alamlahi, “An Email Modelling Approach for Neural Network Spam Filtering to Improve Score-based Anti-spam Systems”, Journal of Computer Network and Information Security, vol. 10, no.12, 2018, pp. 1-10 미소장
16 Venkatesh Garnepudi, (2019, Mar 2). Spam Mails Dataset (Version 1). Available:https://www.kaggle.com/venky73/spam-mails-dat aset 미소장
17 J. Kim, S. Choe, “An Improved Bayesian Spam Mail Filter based on Ch-square Statistics”, Proc. of Korean Institute of Intelligent Systems, pp. 403-414, 2005. 미소장
18 GRAVES, Alex; SCHMIDHUBER, Jürgen. Framewise phoneme classification with bidirectional LSTM networks. In: Proceedings. 2005IEEE International Joint Conference on Neural Networks, 2005. IEEE, 2005. p. 2047-2052. 미소장
19 Email Spam Detection Dataset (classification)https://www.kaggle.com/datasets/s hantanudhakadd/email-spam-detection-dataset-clas sification 미소장
20 M. Schuster, K. K. Paliwal, "Bidirectional recurrent Neural Networks," IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997. 미소장