권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
As robotics become more sophisticated, there are a growing number of generic systems being used for routine tasks in nuclear environments to reduce risk to radiation workers. The nuclear sector has called for more commercial-off-the-shelf (COTS) devices and components to be used in preference to nuclear specific hardware, enabling robotic operations to become more affordable, reliable, and abundant. To ensure reliable operation in nuclear environments, particularly in high-gamma facilities, it is important to quantify the tolerance of electronic systems to ionizing radiation. To deliver their full potential to endusers, mobile robots require sophisticated autonomous behaviors and sensing, which requires significant computational power. A popular choice of computing system, used in low-cost mobile robots for nuclear environments, is the UP Core single board computer. This work presents estimates of the total ionizing dose that the UP Core running the Robot Operating System (ROS) can withstand, through gamma irradiation testing using a Co-60 source. The units were found to fail on average after 111.1 ± 5.5 Gy, due to faults in the on-board power management circuitry. Its small size and reasonable radiation tolerance make it a suitable candidate for robots in nuclear environments, with scope to use shielding to enhance operational lifetime.
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | International Atomic Energy Agency, Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, International Atomic Energy Agency, Vienna, Austria, 2019. | 미소장 |
2 | Nuclear Decommissioning Authority, Annual Report and Accounts 2019 to 2020, Dandy Booksellers Ltd, London, 2020. https://www.gov.uk/government/publications/nuclear-decommissioning-authority-annual-report-andaccounts-2019-to-2020. | 미소장 |
3 | Nuclear Decommissioning Authority, Strategy Effective from March 2021, Dandy Booksellers Ltd, London, 2020. https://www.gov.uk/government/publications/nuclear-decommissioning-authority-strategy-effective-frommarch-2021. | 미소장 |
4 | NDA 5-year R&D Plan 2019 to 2024 - GOV.UK, (n.d.). https://www.gov.uk/government/publications/nda-5-year-research-and-development-plan-2019-to-2024/nda-5-year-rd-plan-2019-to-2024 (accessed March 29, 2021). | 미소장 |
5 | I. Tsitsimpelis, C.J. Taylor, B. Lennox, M.J. Joyce, A review of ground-based robotic systems for the characterization of nuclear environments, Prog. Nucl. Energy 111 (2019) 109-124, https://doi.org/10.1016/j.pnucene.2018.10.023. | 미소장 |
6 | S. Kawatsuma, M. Fukushima, T. Okada, Emergency response by robots to Fukushima-Daiichi accident: summary and lessons learned, Ind. Robot An Int. J. 39 (2012) 428-435, https://doi.org/10.1108/01439911211249715. | 미소장 |
7 | M. Tearle, Industry Guidance: Interim Storage of Higher Activity Waste Packages e Integrated Approach, Effective from January 2017, 2016. | 미소장 |
8 | R. Smith, E. Cucco, C. Fairbairn, Robotic development for the nuclear environment:challenges and strategy, Robotics 9 (2020) 94, https://doi.org/10.3390/robotics9040094. | 미소장 |
9 | I. Tsitsimpelis, A. West, M. Licata, M.D. Aspinall, A. Jazbec, L. Snoj, P.A. Martin, B. Lennox, M.J. Joyce, Simultaneous, robot-compatible g-ray spectroscopy and imaging of an operating nuclear reactor, IEEE Sensor. J. 21 (2021) 5434-5443, https://doi.org/10.1109/jsen.2020.3035147. | 미소장 |
10 | B. Bird, A. Griffiths, H. Martin, E. Codres, J. Jones, A. Stancu, B. Lennox, S. Watson, X. Poteau, A robot to monitor nuclear facilities: using autonomous radiation-monitoring assistance to reduce risk and cost, IEEE Robot. Autom. Mag. 26 (2019) 35-43, https://doi.org/10.1109/mra.2018.2879755. | 미소장 |
11 | R. Guzman, R. Navarro, J. Ferre, M. Moreno, RESCUER: development of a modular chemical, biological, radiological, and nuclear robot for intervention, sampling, and situation awareness, J. Field Robot. 33 (2015) 931-945, https://doi.org/10.1002/rob.21588. | 미소장 |
12 | R.B. Anderson, M. Pryor, S. Landsberger, Mobile Robotic Radiation Surveying Using Recursive Bayesian Estimation, IEEE 15th Int. Conf. Autom. Sci. Eng., IEEE, 2019, https://doi.org/10.1109/coase.2019.8843064, 2019. | 미소장 |
13 | A. West, I. Tsitsimpelis, M. Licata, A. Jazbec, L. Snoj, M.J. Joyce, B. Lennox, Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot, Sci. Rep. 11 (2021), https://doi.org/10.1038/s41598-021-93474-4. | 미소장 |
14 | F.E. Schneider, J. Welle, D. Wildermuth, M. Ducke, Unmanned multi-robot CBRNE reconnaissance with mobile manipulation System description and technical validation, in: Proc. 13th Int. Carpathian Control Conf., IEEE, 2012, https://doi.org/10.1109/carpathiancc.2012.6228724. | 미소장 |
15 | K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, S. Kawatsuma, Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots, J. Field Robot. 30 (2012) 44-63, https://doi.org/10.1002/rob.21439. | 미소장 |
16 | M. Nancekievill, S. Watson, P.R. Green, B. Lennox, Radiation tolerance of commercial-off-the-shelf components deployed in an underground nuclear decommissioning embedded system. IEEE Radiat. Eff. Data Work., IEEE, 2016, https://doi.org/10.1109/NSREC.2016.7891730, 2016. | 미소장 |
17 | C. Ducros, G. Hauser, N. Mahjoubi, P. Girones, L. Boisset, A. Sorin, E. Jonquet, J.M. Falciola, A. Benhamou, RICA: a tracked robot for sampling and radiological characterization in the nuclear field, J. Field Robot. 34 (2016) 583-599, https://doi.org/10.1002/rob.21650. | 미소장 |
18 | R. Merl, P. Graham, A low-cost, radiation-hardened single-board computer for command and data handling, in: IEEE Aerosp. Conf. Proc., IEEE Computer Society, 2016, https://doi.org/10.1109/AERO.2016.7500849. | 미소장 |
19 | R. Ginosar, Survey of processors for space, in: DASIA 2012 - DAta Syst. Aerosp., 2012, p. 10. | 미소장 |
20 | A. Griffiths, A. Dikarev, P.R. Green, B. Lennox, X. Poteau, S. Watson, AVEXIS -Aqua vehicle explorer for in-situ sensing, IEEE Robot. Autom. Lett. 1 (2016)282-287, https://doi.org/10.1109/lra.2016.2519947. | 미소장 |
21 | M. Nancekievill, J. Espinosa, S. Watson, B. Lennox, A. Jones, M.J. Joyce, J. Katakura, K. Okumura, S. Kamada, M. Katoh, K. Nishimura, Detection of simulated Fukushima Daichii fuel Debris using a remotely operated vehicle at the Naraha test facility, Sensors 19 (2019) 4602, https://doi.org/10.3390/s19204602. | 미소장 |
22 | G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou, D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, G. Furano, High-performance embedded computing in space: evaluation of platforms for visionbased navigation, J. Aero. Inf. Syst. 15 (2018) 178-192, https://doi.org/10.2514/1.i010555. | 미소장 |
23 | K. Nagatani, S. Kiribayashi, Y. Okada, S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi, Y. Hada, Redesign of rescue mobile robot quince - toward emergency response to the nuclear accident at Fukushima Daiichi nuclear power station on March 2011, in: 9th IEEE Int. Symp. Safety, Secur. Rescue Robot. SSRR, 2011, pp. 13-18, https://doi.org/10.1109/SSRR.2011.6106794, 2011. | 미소장 |
24 | F.G.H. Leite, R.B.B. Santos, N.E. Araújo, K.H. Cirne, N.H. Medina, V.A.P. Aguiar, R.C. Giacomini, N. Added, F. Aguirre, E.L.A. MacChione, F. Vargas, M.A.G. Da Silveira, Ionizing radiation effects on a COTS low-cost RISC microcontroller, in:Proc. Eur. Conf. Radiat. Its Eff. Components Syst. RADECS, Institute of Electrical and Electronics Engineers Inc., 2017, pp. 1-4, https://doi.org/10.1109/RADECS.2016.8093215. | 미소장 |
25 | Q. Zhao, T. Wang, T. Zhang, J. Chen, g-Ray irradiation test of control system of nuclear emergency rescue robot. 2014 4th IEEE Int. Conf. Inf. Sci. Technol., 2014, https://doi.org/10.1109/ICIST.2014.6920587. IEEE. | 미소장 |
26 | AAEON, UP Core Specifications, (n.d.). https://up-board.org/upcore/specifications/. | 미소장 |
27 | O. Guti errez, M. Prieto, A. S anchez-Reyes, A. G omez, TID Characterization of COTS Parts Using Radiotherapy Linear Accelerators, IEICE Electron. Express, 2019, https://doi.org/10.1587/elex.16.20190077. | 미소장 |
28 | K. Groves, A. West, K. Gornicki, S. Watson, J. Carrasco, B. Lennox, MallARD: an autonomous aquatic surface vehicle for inspection and monitoring of wet nuclear storage facilities, Robotics 8 (2019), https://doi.org/10.3390/ROBOTICS8020047. | 미소장 |
29 | Sellafield Ltd, The 2017/18 Technology Development and Delivery Summary, 2018. | 미소장 |
30 | B. Bird, M. Nancekievill, A. West, J. Hayman, C. Ballard, W. Jones, S. Ross, T. Wild, T. Scott, B. Lennox, Vega - A small, low cost, ground robot for nuclear decommissioning, J. Field Robot. (2021), https://doi.org/10.1002/rob.22048. | 미소장 |
31 | P. Wady, A. Wasilewski, L. Brock, R. Edge, A. Baidak, C. McBride, L. Leay, A. Griffiths, C. Vall es, Effect of ionising radiation on the mechanical and structural properties of 3D printed plastics, Addit. Manuf. 31 (2020) 100907, https://doi.org/10.1016/j.addma.2019.100907. | 미소장 |
32 | M. Haji-Saeid, M.H.O. Sampa, A.G. Chmielewski, Radiation treatment for sterilization of packaging materials, Radiat. Phys. Chem. 76 (2007)1535-1541, https://doi.org/10.1016/j.radphyschem.2007.02.068. | 미소장 |
33 | Department of Defense, Environmental Test Methods for Microcircuits Part 1:Test Methods 1000-1999, 2019. | 미소장 |
34 | E.S.C. Coordination, Total Dose Steady-state Irradiation Test Method, 2016. | 미소장 |
35 | C. Lee, G. Cho, T. Unruh, S. Hur, I. Kwon, Integrated circuit design for radiationhardened charge-sensitive amplifier survived up to 2 Mrad, Sensors 20 (10)(2020) 2765, https://doi.org/10.3390/s20102765. | 미소장 |
36 | S. Seltzer, XCOM-photon Cross Sections Database 8, NIST Standard Reference Database, 1987, https://doi.org/10.18434/T48G6X. | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.