권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
배경 및 목적: 본 연구는 최근 5년간 말 · 언어장애 평가 및 진단을 위해 활용된 인공지능의 전반적 연구 동향을 살펴보고 향후 의사소통장애 분야에서의 인공지능 적용에 대한 시사점을 고찰해 보기 위해 시행되었다. 방법: 체계적 문헌고찰 방법에 따라 2016년부터 2021년 8월까지 국외 학술지에 게재된 총 18편의 논문의 질적분석을 실시하고 특성 및 수행력을 중심으로 분석하였다. 결과: 본 연구에서 선정된 18편의 논문은 전반적으로 낮은 비뚤림을 보고하였고 2018년부터 인공지능을 활용한 평가 및 진단 관련 연구가 증가하는 추세를 보였다. 선정된 문헌의 연구 대상 연령대의 경우 주로 아동을 대상으로 실시되었으며, 분석문헌의 대부분은 실험연구를 통해 그것의 실효성을 검증하였다. 평가 및 진단을 위해 추출된 특성은 음향학적 특성이 주로 사용되었고 말하기 과제 및 음소, 단어 수준에서 분석이 이루어졌으며, 인공지능의 수행력 결과는 목적 및 지표에 따라 상이했다. 논의 및 결론: 본 연구에서는 의사소통장애 분야에서 인공지능 기술을 활용하고자 하는 활발한 시도를 확인하였고 실제 임상현장 적용 가능성을 위한 논의가 이루어졌다. 인공지능이 평가 및 진단을 목적으로 활용되기 위해서는 언어병리학 전문가의 적극적 참여를 통해 각 대상군의 말·언어적 특성을 기반으로 하는 평가 과제 적용이 모색되어야 하며 언어병리학 분야 내 축적된 지식이 반영된 양질의 빅데이터 구축이 선행되어야 한다.
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | Aram, D. M., & Hall, N. E. (1989). Longitudinal follow-up of children with preschool communication disorders: treatment implications. School Psychology Review, 18(4), 487-501. | 미소장 |
2 | *Barbera, D. S., Huckvale, M., Fleming, V., Upton, E., Coley-Fisher, H., Doogan, C., ... & Crinion, J. (2021). NUVA: a naming utterance verifier for aphasia treatment. Computer Speech & Language, 69, 1-25. | 미소장 |
3 | *Benfatto, M. N., Seimyr, G. Ö., Ygge, J., Pansell, T., Rydberg, A., & Jacobson, C. (2016). Screening for dyslexia using eye tracking during reading. PLoS ONE, 11(12), 1-16. | 미소장 |
4 | Bhbosale, S., Pujari, V., & Multani, Z. (2020). Advantages and disadvantages of artificial intellegence. Aayushi International Interdisciplinary Research Journal, 77, 227-230. | 미소장 |
5 | Davidson, M. (2002). The interpretation of diagnostic tests: a primer for physiotherapists. Australian Journal of Physiotherapy, 48(3), 227-232. | 미소장 |
6 | de la Fuente Garcia, S., Ritchie, C., & Luz, S. (2020). Artificial intelligence, speech and language processing approaches to monitoring Alzheimer’s disease: a systematic review. Journal of Alzheimer’s Disease, 78(4), 1547-1574. | 미소장 |
7 | Dhillon, H., Chaudhari, P. K., Dhingra, K., Kuo, R. F., Sokhi, R. K., Alam, M. K., & Ahmad, S. (2021). Current applications of artificial intelligence in cleft care: a scoping review. Frontiers in Medicine, 8, 1-14. | 미소장 |
8 | Dockrell, J. E. (2001). Assessing language skills in preschool children. Child Psychology and Psychiatry Review, 6(2), 74-85. | 미소장 |
9 | *Dubey, A. K., Prasanna, S. M., & Dandapat, S. (2020). Sinusoidal model-based hypernasality detection in cleft palate speech using CVCV sequence. Speech Communication, 124, 1-12. | 미소장 |
10 | Eriksen, M. B., & Frandsen, T. F. (2018). The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review. Journal of the Medical Library Association, 106(4), 420-431. | 미소장 |
11 | Ertmer, D. J. (2011). Assessing speech intelligibility in children with hearing loss: toward revitalizing a valuable clinical tool. Language, Speech, and Hearing Services in Schools, 2(1), 52-58. | 미소장 |
12 | *Hammami, I., Salhi, L., & Labidi, S. (2020). Voice pathologies classification and detection using EMD-DWT analysis based on higher order statistic features. IRBM, 41(3), 161-171. | 미소장 |
13 | Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500-510. | 미소장 |
14 | *Hu, H. C., Chang, S. Y., Wang, C. H., Li, K. J., & Cho, H. Y. (2021). Deep learning application for vocal fold disease prediction through voice recognition: preliminary development study. Journal of Medical Internet Research, 23(6), e25247. | 미소장 |
15 | Jeong, D. (2017). Trend on artificial intelligence technology and its related industry. Korea Institute of Information Technology Magazine, 15(2), 21-28. | 미소장 |
16 | Jung, D. H. (2018). Business strategy in the age of artificial intelligence. Korea: Thequest. | 미소장 |
17 | Jung, W. S. (2020). Discrimination and bias of artificial intelligence. Human Beings, Environment and Their Future, 25, 55-73. | 미소장 |
18 | *Kadiri, S. R., & Alku, P. (2019). Analysis and detection of pathological voice using glottal source features. IEEE Journal of Selected Topics in Signal Processing, 14(2), 367-379. | 미소장 |
19 | Kang, J., Kang, H., Lee, S., & Sim, H. (2022). Research trends on the use of artificial intelligence in intervention for communication disorders. Journal of Speech-Language & Hearing Disorders, 31(2), 107-115. | 미소장 |
20 | Kanimozhiselvi, C. S., & Santhiya, S. (2021). Communication disorder identification from recorded speech using machine learning assisted mobile application. Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 789-793. | 미소장 |
21 | Kaur, P., Chavan, B. S., Lata, S., Kaur, A., Tinku, S., Arora, Y., & Ratnam, V. (2006). Early intervention in developmental delay. The Indian Journal of Pediatrics, 73(5), 405-408. | 미소장 |
22 | *Kaushik, M., Baghel, N., Burget, R., Travieso, C. M., & Dutta, M. K. (2021). SLINet: dysphasia detection in children using deep neural network. Biomedical Signal Processing and Control, 68, 1-18. | 미소장 |
23 | *Khan, R. U., Cheng, J. L. A., & Bee, O. Y. (2018). Machine learning and dyslexia: diagnostic and classification system (DCS) for kids with learning disabilities. International Journal of Engineering & Technology, 7(3.18), 97-100. | 미소장 |
24 | Khanagar, S. B., Naik, S., Al Kheraif, A. A., Vishwanathaiah, S., Maganur, P. C., Alhazmi, Y., ... & Patil, S. (2021). Application and performance of artificial intelligence technology in oral cancer diagnosis and prediction of prognosis: a systematic review. Diagnostics, 11(6), 1004-1015. | 미소장 |
25 | Kim, J. H. (2020). AI’s strongest classes. Seoul: Maeil Business Newspaper. | 미소장 |
26 | Kim, S. Y., Park, J. E., Seo, H. J., Seo, H. S., Son, H. J., Shin, C. M., Lee, Y. J., Jang, B. H., Heo, D. S. (2011). NECA’s guidance for undertaking systematic reviews and meta-analyses for intervention. Seoul: National Evidence-based Healthcare Collaborating Agency. | 미소장 |
27 | Kim, S., & Yim, D. (2021). The effects of parent training on narrative interaction for parents with hearing loss who have children with normal hearing: a case study using AI speakers. Journal of Speech-Language & Hearing Disorders, 30(1), 89-101. | 미소장 |
28 | *Kourkounakis, T., Hajavi, A., & Etemad, A. (2021). Fluentnet: end-to-end detection of stuttered speech disfluencies with deep learning. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 2986-2999. | 미소장 |
29 | Kunze, K. N., Rossi, D. M., White, G. M., Karhade, A. V., Deng, J., Williams, B. T., & Chahla, J. (2021). Diagnostic performance of artificial intelligence for detection of anterior cruciate ligament and meniscus tears: a systematic review. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 37(2), 771-781. | 미소장 |
30 | Law, B. M. (2020). AI: A new window into communication disorders?. Retrieved from https://leader.pubs.asha.org/do/10.1044/leader.FTR1.25102020.44/full/?u. | 미소장 |
31 | Lee, Y. K., & Lee, S. M. (2011). Clinical trials and accuracy of diagnostic tests. Journal of Genetic Medicine, 8(1), 28-34. | 미소장 |
32 | Lee, Y., Park, H., Lee, Y. (2021). A systematic review of parent training for children with communication disorders in Korea. Communication Sciences & Disorders, 26(3), 727-741. | 미소장 |
33 | *Li, M., Tang, D., Zeng, J., Zhou, T., Zhu, H., Chen, B., & Zou, X. (2019). An automated assessment framework for atypical prosody and stereotyped idiosyncratic phrases related to autism spectrum disorder. Computer Speech & Language, 56, 80-94. | 미소장 |
34 | Liss, J. (2020). How will artificial intelligence reshape speech-Language pathology services and practice in the future?. Retrieved from https://academy.pubs.asha.org/2020/08/how-will-artificial-intelligence-reshape-speech-language-pathology-services-and-practice-in-the-future/. | 미소장 |
35 | *Liu, Y., Lee, T., Law, T., & Lee, K. Y. S. (2019). Acoustical assessment of voice disorder with continuous speech using ASR posterior features. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(6), 1047-1059. | 미소장 |
36 | *Mahmoud, S. S., Kumar, A., Tang, Y., Li, Y., Gu, X., Fu, J., & Fang, Q. (2020). An efficient deep learning-based method for speech assessment of mandarin-speaking aphasic patients. IEEE Journal of Biomedical and Health Informatics, 24(11), 3191-3202. | 미소장 |
37 | *Mathad, V. C., & Prasanna, S. M. (2019). Vowel onset point based screening of misarticulated stops in cleft lip and palate speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 450-460. | 미소장 |
38 | Melo, F. S., Sardinha, A., Belo, D., Couto, M., Faria, M., Farias, A., ... & Ventura, R. (2019). Project INSIDE: towards autonomous semi-unstructured human–robot social interaction in autism therapy. Artificial Intelligence in Medicine, 96, 198-216. | 미소장 |
39 | Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLOS Medicine, 6(7), 1-6. | 미소장 |
40 | Moon, J. E., & Cho, Y. J. (2021). Prospects for the development of rehabilitation medical robots. Journal of Digital Convergence, 19(6), 393-398. | 미소장 |
41 | *Nakai, Y., Takiguchi, T., Matsui, G., Yamaoka, N., & Takada, S. (2017). Detecting abnormal word utterances in children with autism spectrum disorders: machine-learning-based voice analysis versus speech therapists. Perceptual and Motor Skills, 124(5), 961-973. | 미소장 |
42 | Oleson, J. J., Brown, G. D., & McCreery, R. (2019). The evolution of statistical methods in speech, language, and hearing sciences. Journal of Speech, Language, and Hearing Research, 62(3), 498-506. | 미소장 |
43 | Park, C., Lim, Y., Sung, J. E. (2019). Machine-learning and corpus-based analyses of Korean nouns from subjects and objects: stimuli development of verb treatment for neurogenic communication disorders. Communication Sciences & Disorders, 24(4), 968-985. | 미소장 |
44 | Park, H. J. (2020). Trend analysis of korea papers in the fields of ‘artificial intelligence’, ‘machine learning ‘and ‘deep learning’. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 13(4), 283-292. | 미소장 |
45 | *Perera, H., Shiratuddin, M. F., Wong, K. W., & Fullarton, K. (2018). EEG signal analysis of writing and typing between adults with dyslexia and normal controls. International Journal of Interactive Multimedia and Artificial Intelligence, 5(1), 62-68. | 미소장 |
46 | Preston, J., & Edwards, M. L. (2010). Phonological awareness and types of sound errors in preschoolers with speech sound disorders. Journal of Speech, Language, and Hearing Research, 53(1), 44-60. | 미소장 |
47 | Qin, Y., Lee, T., Kong, A. P. H., & Law, S. P. (2016). Towards automatic assessment of aphasia speech using automatic speech recognition techniques. Proceedings of the 2016 10th International Symposium on Chinese Spoken Language Processing (ISCSLP), 1-4. | 미소장 |
48 | *Reddy, M. K., Alku, P., & Rao, K. S. (2020). Detection of specific language impairment in children using glottal source features. IEEE Access, 8, 15273-15279. | 미소장 |
49 | Seo, K. W., & Moon, H. K. (2017). Method logical quality of meta-analyses on the multi-culture. Asia-Pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 7(8), 211-223. | 미소장 |
50 | *Sharma, G., Zhang, X. P., Umapathy, K., & Krishnan, S. (2021). Audio texture and age-wise analysis of disordered speech in children having specific language impairment. Biomedical Signal Processing and Control, 66, 1-8. | 미소장 |
51 | Shea, B. J., Hamel, C., Wells, G. A., Bouter, L. M., Kristjansson, E., Grimshaw, J., ... & Boers, M. (2009). AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. Journal of Clinical Epidemiology, 62(10), 1013-1020. | 미소장 |
52 | Shen, J., Zhang, C. J., Jiang, B., Chen, J., Song, J., Liu, Z., ... & Ming, W. K. (2019). Artificial intelligence versus clinicians in disease diagnosis: systematic review. JMIR Medical Informatics, 7(3), 1-15. | 미소장 |
53 | Sim, H. S., Kim, Y. T., Lee, Y. K., Kim, M. S., Kim, S. J., Lee, E. J., … & Yoon, M. S. (2019). Diagnosis & evaluation in communication disorders (2nd). Seoul: Hakjisa. | 미소장 |
54 | Song, S., Chon, H., Lee, S. B., (2020). Analyzing the disfluency of reading tasks of persons who stutter based on deep learning and word embedding. Communication Sciences & Disorders, 25(3), 721-737. | 미소장 |
55 | Voleti, R., Liss, J. M., & Berisha, V. (2019). A review of automated speech and language features for assessment of cognitive and thought disorders. IEEE Journal of Selected Topics in Signal Processing, 14(2), 282-298. | 미소장 |
56 | Voss, C., Schwartz, J., Daniels, J., Kline, A., Haber, N., Washington, P., ... & Wall, D. P. (2019). Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: a randomized clinical trial. JAMA Pediatrics, 173(5), 446-454. | 미소장 |
57 | *Wang, X., Yang, S., Tang, M., Yin, H., Huang, H., & He, L. (2019). Hypernasality Net: Deep recurrent neural network for automatic hypernasality detection. International Journal of Medical Informatics, 129, 1-12. | 미소장 |
58 | Ward, S. (1999). An investigation into the effectiveness of an early intervention method for delayed language development in young children. International Journal of Language & Communication Disorders, 34(3), 243-264. | 미소장 |
59 | Whiting, P. F., Rutjes, A. W., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B., ... & QUADAS-2 Group*. (2011). QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8), 529-536. | 미소장 |
60 | Wijesinghe, A., Samarasinghe, P., Seneviratne, S., Yogarajah, P., & Pulasinghe, K. (2019). Machine learning based automated speech dialog analysis of autistic children. Proceddigns of the 2019 11th International Conference on Knowledge and Systems Engineering (KSE), 1-5. | 미소장 |
61 | Zhang, J., & Mueller, S. T. (2005). A note on ROC analysis and non-parametric estimate of sensitivity. Psychometrika, 70(1), 203-212. | 미소장 |
62 | Zhao, Y., Wang, D., Johnson, E. M., & Healy, E. W. (2018). A deep learning-based segregation algorithm to increase speech intelligibility for hearing-impaired listeners in reverberant-noisy conditions. The Journal of the Acoustical Society of America, 144(3), 1627-1637. | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.