본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차 1

확률적 변동성을 가진 은닉마르코프 모형을 통한 비트코인 가격의 변동성 추정 = Hidden Markov model with stochastic volatility for estimating bitcoin price volatility / 강태현 ; 황범석 1

Abstract 1

1. 서론 1

2. 모형 설명 2

2.1. Hidden Markov model 2

2.2. Stochastic volatility model 5

3. 실제 데이터 분석 7

3.1. 비트코인 데이터 7

3.2. 적절한 은닉 상태 수의 결정 7

3.3. 은닉 상태 수에 따른 SV 모형 7

3.4. 분석 결과 12

4. 결론 및 향후 보완과제 13

References 14

요약 16

권호기사

참고문헌 (20건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Bosire MB and Maina SC (2021). Modelling stochastic volatility in the kenyan securities market using hidden markov models, Journal of Financial Risk Management, 10, 367–395. 미소장
2 Derek S (2011). Monte Carlo approaches to hidden Markov model state estimation, Master of Science in Applied Mathematics (pp. 1–40), eScholarship, University of California, California. 미소장
3 Harvey AC and Shephard N (1996). Estimation of an asymmetric stochastic volatility model for asset returns, Journal of Business & Economic Statistics, 14, 429–434. 미소장
4 Hassan MR and Nath B (2005) Stock market forecasting using hidden Markov model: A new approach. In Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, Warsaw, Poland, 192–196. 미소장
5 Heston SL (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6, 327–343. 미소장
6 Hoffman MD and Gelman A (2014). The No-U-Turn Sampler: Adaptively setting path lengths in hamiltonian Monte Carlo, Journal of Machine Learning Research, 15, 1593–1623. 미소장
7 Kang HJ and Hwang BS (2021). A hidden Markov model for predicting global stock market index, The Korean Journal of Applied Statistics, 34, 447–461. 미소장
8 Kim JE (2005). Parameter estimation in stochastic volatility model with missing data using particle methods and the EM algorithm (Doctoral dissertation), University of Pittsburgh, Pittsburgh, PA. 미소장
9 Krichene N (2003). Modeling Stochastic Volatility with Application to Stock Returns, International Monetary Fund 2003. 미소장
10 Lamoureux CG (1990). Persistence in variance, structural change, and the GARCH model, Journal of Business & Economic Statistics, 8, 225–234. 미소장
11 Lihn HT (2017). Hidden Markov model for financial time series and its application to S&P 500 index, Quantitative Finance, Forthcoming. 미소장
12 Nguyen N (2018). Hidden Markov model for stock trading, International Journal of Financial Studies, 6, 1–17. 미소장
13 Nguyen N and Nguyen D (2015). Hidden Markov model for stock selection, Risks, 3, 455–473. 미소장
14 Nkemnole EB and Abass O (2017). Forecasting volatility of stock indices with HMM-SV models, unpublished paper, 1–20. 미소장
15 Rabiner LR (1989). A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 77, 257–286. 미소장
16 Raggi D and Bordignon S (2006). Sequential Monte Carlo methods for stochastic volatility models with jumps, unpublished paper, 1–19. 미소장
17 Sandmann G and Koopman SJ (1998). Estimation of stochastic volatility models via Monte Carlo maximum likelihood, Journal of Econometrics, 87, 271–301. 미소장
18 Scott R (2021). Predicting stock and portfolio returns with bayesian methods, Available from: https://srome.github. io/Eigenvesting-IV-Predicting-Stock-And-Portfolio-Returns-With-Bayesian-Statistics/ 미소장
19 Taylor SJ (1994). Modeling stochastic volatility: A review and comparative study, Mathematical Finance, 4, 183–204. 미소장
20 Viterbi A (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Transactions on Information Theory, 13, 260–269. 미소장