본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

초록보기

Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
(The) role of diuretic hormones (DHs) and their receptors in Drosophila Gahbien Lee, Heejin Jang, Yangkyun Oh p. 209-215

Expanding roles of centrosome abnormalities in cancers Soohyun Song, Surim Jung, Mijung Kwon p. 216-224

Deciphering the underlying mechanism of liver diseases through utilization of multicellular hepatic spheroid models Sanghwa Kim, Su-Yeon Lee, Haeng Ran Seo p. 225-233

Tat-thioredoxin-like protein 1 attenuates ischemic brain injury by regulation of MAPKs and apoptosis signaling Hyun Ju Cha, Won Sik Eum, Gi Soo Youn, Jung Hwan Park, Hyeon Ji Yeo, Eun Ji Yeo, Hyun Jung Kwon, Lee Re Lee, Na Yeon Kim, Su Yeon Kwon … [et al.] p. 234-239

Secreted decoy of insulin receptor is required for blood-brain and blood-retina barrier integrity in Drosophila Jihyun Kim, Nuri Choi, Jeongsil Kim-Ha p. 240-245

Tschimganidine reduces lipid accumulation through AMPK activation and alleviates high-fat diet-induced metabolic diseases Min-Seon Hwang, Jung-Hwan Baek, Jun-Kyu Song, In Hye Lee, Kyung-Hee Chun p. 246-251

Determination of HIF-1α degradation pathways via modulation of the propionyl mark Kwanyoung Jeong, Jinmi Choi, Ahrum Choi, Joohee Shim, Young Ah Kim, Changseok Oh, Hong-Duk Youn, Eun-Jung Cho p. 252-257

New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study Eun-Young Lee, Young-Ho Kim, Md Abu Rayhan, Hyun Guy Kang, June Hyuk Kim, Jong Woong Park, Seog-Yun Park, So Hee Lee, Hye Jin You p. 258-264

참고문헌 (87건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Conduit PT, Wainman A and Raff JW (2015) Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 16, 611-624 미소장
2 Gonczy P (2015) Centrosomes and cancer: revisiting a long-standing relationship. Nat Rev Cancer 15, 639-652 미소장
3 Nigg EA and Holland AJ (2018) Once and only once:mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 19, 297-312 미소장
4 Nigg EA (2006) Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 119, 2717-2723 미소장
5 Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7, 1122-1144 미소장
6 Marteil G, Guerrero A, Vieira AF et al (2018) Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat Commun 9, 1258 미소장
7 Kramer A, Neben K and Ho AD (2005) Centrosome aberrations in hematological malignancies. Cell Biol Int 29, 375-383 미소장
8 Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2, 815-825 미소장
9 Galeotti G (1893) Beitrag zum Studium des Chromatins in den Epithelzellen der Carcinome. Beitr Pathol Anat Allg Pathol 14, 249–271 미소장
10 Hardy P (2005) Reappraisal of the Hansemann-Boveri hypothesis on the origin of tumors. Cell Biol Int 29, 983–992 미소장
11 Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121, 1–84 미소장
12 Godinho SA and Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 369, 20130467 미소장
13 Pihan GA, Wallace J, Zhou YN and Doxsey SJ (2003)Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63, 1398-1404 미소장
14 Schnerch D and Nigg EA (2016) Structural centrosome aberrations favor proliferation by abrogating microtubuledependent tissue integrity of breast epithelial mammospheres. Oncogene 35, 2711-2722 미소장
15 Ogden A, Rida PC and Aneja R (2017) Prognostic value of CA20, a score based on centrosome amplification-associated genes, in breast tumors. Sci Rep 7, 262 미소장
16 de Almeida BP, Vieira AF, Paredes J, Bettencourt-Dias M and Barbosa-Morais NL (2019) Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome. PLoS Comput Biol 15, e1006832 미소장
17 Morretton JP, Simon A, Herbette A et al (2022) A catalog of numerical centrosome defects in epithelial ovarian cancers. EMBO Mol Med 14, e15670 미소장
18 Shin B, Kim MS, Lee Y, Jung GI and Rhee K (2021)Generation and fates of supernumerary centrioles in dividing cells. Mol Cells 44, 699-705 미소장
19 Habedanck R, Stierhof YD, Wilkinson CJ and Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7, 1140-1146 미소장
20 Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD and Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13, 190-202 미소장
21 Liao Z, Zhang H, Fan P et al (2019) High PLK4 expression promotes tumor progression and induces epithelial-mesenchymal transition by regulating the Wnt/beta-catenin signaling pathway in colorectal cancer. Int J Oncol 54, 479-490 미소장
22 Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L et al (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15, 2199-2207 미소장
23 Basto R, Brunk K, Vinadogrova T et al (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032-1042 미소장
24 Cunha-Ferreira I, Rodrigues-Martins A, Bento I et al (2009)The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol 19, 43-49 미소장
25 Holland AJ, Lan W, Niessen S, Hoover H and Cleveland DW (2010) Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol 188, 191-198 미소장
26 Rogers GC, Rusan NM, Roberts DM, Peifer M and Rogers SL (2009) The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol 184, 225-239 미소장
27 Sillibourne JE, Tack F, Vloemans N et al (2010) Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol Biol Cell 21, 547-561 미소장
28 Guderian G, Westendorf J, Uldschmid A and Nigg EA (2010) Plk4 trans-autophosphorylation regulates centriole number by controlling beta TrCP-mediated degradation. J Cell Sci 123, 2163-2169 미소장
29 Loncarek J, Hergert P and Khodjakov A (2010) Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1. Curr Biol 20, 1277-1282 미소장
30 Shukla A, Kong D, Sharma M, Magidson V and Loncarek J (2015) Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat Commun 6, 8077 미소장
31 Inanc B, Dodson H and Morrison CG (2010) A centrosomeautonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol Biol Cell 21, 3866-3877 미소장
32 Douthwright S and Sluder G (2014) Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol 229, 1427-1436 미소장
33 Sabino D, Gogendeau D, Gambarotto D et al (2015)Moesin is a major regulator of centrosome behavior in epithelial cells with extra centrosomes. Curr Biol 25, 879-889 미소장
34 Castellanos E, Dominguez P and Gonzalez C (2008)Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol 18, 1209-1214 미소장
35 Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P and Basto R (2013) Centrosome amplification causes microcephaly. Nat Cell Biol 15, 731-740 미소장
36 Vitre B, Holland AJ, Kulukian A et al (2015) Chronic centrosome amplification without tumorigenesis. Proc Natl Acad Sci U S A 112, 6321-6330 미소장
37 Kulukian A, Holland AJ, Vitre B, Naik S, Cleveland DW and Fuchs E (2015) Epidermal development, growth control, and homeostasis in the face of centrosome amplification. Proc Natl Acad Sci U S A 112, 6311-6320 미소장
38 Sercin O, Larsimont JC, Karambelas AE et al (2016) Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol 18, 100-110 미소장
39 Coelho PA, Bury L, Shahbazi MN et al (2015) Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol 5, 510209 미소장
40 Levine MS, Bakker B, Boeckx B et al (2017) Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell 40, 313-322 미소장
41 Godinho SA, Kwon M and Pellman D (2009) Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 28, 85-98 미소장
42 Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM and Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127-129 미소장
43 Kwon M, Godinho SA, Chandhok NS et al (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22, 2189-2203 미소장
44 Leber B, Maier B, Fuchs F et al (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2, 33ra38 미소장
45 Ganem NJ, Godinho SA and Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278-282 미소장
46 Silkworth WT, Nardi IK, Scholl LM and Cimini D (2009)Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. Plos One 4, e6564 미소장
47 Liu S, Kwon M, Mannino M et al (2018) Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551-555 미소장
48 Kwon M, Leibowitz ML and Lee JH (2020) Small but mighty: the causes and consequences of micronucleus rupture. Exp Mol Med 52, 1777-1786 미소장
49 Hatch EM, Fischer AH, Deerinck TJ and Hetzer MW (2013) Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47-60 미소장
50 Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53-58 미소장
51 Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522, 179-184 미소장
52 Janssen A, van der Burg M, Szuhai K, Kops G and Medema RH (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895-1898 미소장
53 Lambert AW, Pattabiraman DR and Weinberg RA (2017)Emerging biological principles of metastasis. Cell 168, 670-691 미소장
54 Godinho SA, Picone R, Burute M et al (2014) Oncogenelike induction of cellular invasion from centrosome amplification. Nature 510, 167-171 미소장
55 Bid HK, Roberts RD, Manchanda PK and Houghton PJ (2013) RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther 12, 1925-1934 미소장
56 Mack NA, Whalley HJ, Castillo-Lluva S and Malliri A (2011) The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 10, 1571-1581 미소장
57 Arnandis T, Monteiro P, Adams SD et al (2018) Oxidative stress in cells with extra centrosomes drives non-cell-autonomous invasion. Dev Cell 47, 409-424 미소장
58 Adams SD, Csere J, D’Angelo G et al (2021) Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr Biol 31, 1403-1416 e1407 미소장
59 Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H and Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836-848 미소장
60 van Niel G, D’Angelo G and Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19, 213-228 미소장
61 Ganier O, Schnerch D, Oertle P, Lim RYH, Plodinec M and Nigg EA (2018) Structural centrosome aberrations promote non-cell-autonomous invasiveness. EMBO J 37, e98576 미소장
62 Ganier O, Schnerch D and Nigg EA (2018) Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion. Open Biol 8, 180044 미소장
63 Yu LL, Song YM, Zhang QH and Zhan QM (2009)Ninein-like protein is overexpressed in head and neck squamous cell carcinoma and contributes to cancer growth and resistance to apoptosis. Oncol Rep 22, 789-798 미소장
64 Qu D, Qu HY, Fu M et al (2008) Increased expression of Nlp, a potential oncogene in ovarian cancer, and its implication in carcinogenesis. Gynecol Oncol 110, 230-236 미소장
65 Shao S, Liu R, Wang Y et al (2010) Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice. J Clin Invest 120, 498-507 미소장
66 Slattum GM and Rosenblatt J (2014) Tumour cell invasion:an emerging role for basal epithelial cell extrusion. Nat Rev Cancer 14, 495-501 미소장
67 Ohsawa S, Vaughen J and Igaki T (2018) Cell extrusion: a stress-responsive force for good or evil in epithelial homeostasis. Dev Cell 44, 284-296 미소장
68 Gu YP, Shea J, Slattum G et al (2015) Defective apical extrusion signaling contributes to aggressive tumor hallmarks. Elife 4, e04069 미소장
69 Bazzi H and Anderson KV (2014) Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc Natl Acad Sci U S A 111, 1491-1500 미소장
70 Lambrus BG, Uetake Y, Clutario KM et al (2015) p53protects against genome instability following centriole duplication failure. J Cell Biol 210, 63-77 미소장
71 Wong YL, Anzola JV, Davis RL et al (2015) Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155-1160 미소장
72 Fong CS, Mazo G, Das T et al (2016) 53BP1 and USP28mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. Elife 5, e16270 미소장
73 Lambrus BG, Daggubati V, Uetake Y et al (2016) A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J Cell Biol 214, 143-153 미소장
74 Meitinger F, Anzola JV, Kaulich M et al (2016) 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J Cell Biol 214, 155-166 미소장
75 Lambrus BG and Holland AJ (2017) A new mode of mitotic surveillance. Trends Cell Biol 27, 314-321 미소장
76 Uetake Y and Sluder G (2010) Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol 20, 1666-1671 미소장
77 Contadini C, Monteonofrio L, Virdia I et al (2019) p53mitotic centrosome localization preserves centrosome integrity and works as sensor for the mitotic surveillance pathway. Cell Death Dis 10, 850 미소장
78 Holland AJ, Fachinetti D, Zhu Q et al (2012) The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev 26, 2684-2689 미소장
79 Ganem NJ, Cornils H, Chiu SY et al (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848 미소장
80 Fava LL, Schuler F, Sladky V et al (2017) The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev 31, 34-45 미소장
81 Evans LT, Anglen T, Scott P, Lukasik K, Loncarek J and Holland AJ (2021) ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO J 40, e105106 미소장
82 Burigotto M, Mattivi A, Migliorati D et al (2021) Centriolar distal appendages activate the centrosome-PIDDosome-p53signalling axis via ANKRD26. EMBO J 40, e104844 미소장
83 Zhang D, Zaugg K, Mak TW and Elledge SJ (2006) A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126, 529-542 미소장
84 Iwabuchi K, Bartel PL, Li B, Marraccino R and Fields S (1994) Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci U S A 91, 6098-6102 미소장
85 Aylon Y, Michael D, Shmueli A, Yabuta N, Nojima H and Oren M (2006) A positive feedback loop between the p53and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 20, 2687-2700 미소장
86 Tinel A and Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843-846 미소장
87 Oliver TG, Meylan E, Chang GP et al (2011) Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol Cell 43, 57-71 미소장