본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

초록보기

This paper considers a parabolic-hyperbolic-hyperbolic type chemotaxis system in ℝ𝑑, 𝑑≥3, describing tumor-induced angiogenesis. The global existence result and temporal decay estimate for a unique mild solution are established under the assumption that some Sobolev norms of initial data are sufficiently small.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Symmetry of the twisted Gromov-Witten classes of projective line Hyenho Lho p. 479-501

Schur convexity of L-conjugate means and its applications Chun-Ru Fu, Huan-Nan Shi, Dong-Sheng Wang p. 503-520

On uniformly S-absolutely pure modules Xiaolei Zhang p. 521-536

Two-sided estimates for transition probabilities of symmetric Markov chains on Z[d] Zhi-He Chen p. 537-564

On solvability of a class of degenerate Kirchhoff equations with logarithmic nonlinearity Uğur Sert p. 565-586

Time periodic solution for the compressible magneto-micropolar fluids with external forces in R3 Qingfang Shi, Xinli Zhang p. 587-618

Temporal decay of solutions for a chemotaxis model of angiogenesis type Jaewook Ahn, Myeonghyeon Kim p. 619-634

Gradient type estimates for linear elliptic systems from composite materials Youchan Kim, Pilsoo Shin p. 635-682

On relative Cohen-Macaulay modules Zhongkui Liu, Pengju Ma, Xiaoyan Yang p. 683-694

참고문헌 (15건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Bio. 60 (1998), 857–899. 미소장
2 J. C. Bowersox and N. Sorgente, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res. 42 (1982), 2547–2551. 미소장
3 M. Chae, K. Kang, and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations 39 (2014), no. 7, 1205–1235. https://doi.org/10.1080/03605302.2013.852224 미소장
4 L. Corrias, B. Perthame, and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Math. Acad. Sci. Paris 336 (2003), no. 2, 141–146. https://doi.org/10.1016/S1631-073X(02)00008-0 미소장
5 L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math. 72 (2004), 1–28. https://doi.org/10.1007/s00032-003-0026-x 미소장
6 J. Folkman and M. Klasgsburn, Angiogenic factors, Science 235 (1987), 442–447. 미소장
7 A. Friedman and J. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl. 272 (2002), no. 1, 138–163. https://doi.org/10.1016/S0022-247X(02)00147-6 미소장
8 A. Kubo and T. Suzuki, Mathematical models of tumour angiogenesis, J. Comput. Appl. Math. 204 (2007), no. 1, 48–55. https://doi.org/10.1016/j.cam.2006.04.027 미소장
9 L. A. Liotta, C. N. Rao, and S. H. Barsky, Tumor invasion and the extracellular matrix, Lab. Invest. 49 (1983), 636–649. 미소장
10 P. Monaghan, M. J. Warburton, N. Perusinghe, and P. S. Rutland, Topographical arrangement of basement membrane proteins in lactating rat mammary gland: Comparison of the distribution of type IV collagen, laminin, fibronectin and Thy-1 at the ultrastructural level, Proc. Nat. Acad. Sci. 80 (1983), 3344–3348. 미소장
11 V. R. Muthukkaruppan, L. Kubai, and R. Auerbach, Tumor-induced neovascularization in the mouse eye, J. Natl. Cancer Inst. 69 (1982), 699–705. 미소장
12 B. Perthame and A. F. Vasseur, Regularization in Keller-Segel type systems and the De Giorgi method, Commun. Math. Sci. 10 (2012), no. 2, 463–476. https://doi.org/10. 4310/CMS.2012.v10.n2.a2 미소장
13 S. L. Schor, A. M. Schor, and G. W. Brazill, The effects of fibronectin on the migration of human foreskin fibroblasts and Syrian hamster melanoma cells into three-dimensional gels of native collagen fibres, J. Cell Sci. 48 (1981), 301–314. 미소장
14 Y. Sugiyama, Y. Tsutsui, and J. J. L. Vel´azquez, Global solutions to a chemotaxis system with non-diffusive memory, J. Math. Anal. Appl. 410 (2014), no. 2, 908–917. https://doi.org/10.1016/j.jmaa.2013.08.065 미소장
15 T. Suzuki and R. Takahashi, Global in time solution to a class of tumor growth systems, Adv. Math. Sci. Appl. 19 (2009), no. 2, 503–524. 미소장