본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차 1

칩 간 공간적 유사성과 검사항목의 상관관계를 고려한 반도체 웨이퍼 테스트 데이터의 결측치 대체 방법 개발 = Development of a missing value imputation method for semiconductor wafer test data considering spatial similarity among chips and correlation between test items / 김주영 ; 배영목 ; 최승현 ; 김광재 1

[요약] 1

1. 서론 1

2. 문헌 리뷰 2

3. 제안 방법론 3

3.1. GAIN 3

3.2. 제안 방법 4

4. 실험 5

4.1. 실험 환경 설정 5

4.2. 제안 방법의 성능 평가 5

4.3. 제안 방법의 활용 및 활용 결과 6

5. 토의 6

6. 결론 7

참고문헌 7

저자소개 8

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
복수의 성과요소로 구성된 연구개발 프로젝트의 실물옵션 기반 경제적 가치 평가 모형 개발 = A real option-based economic evaluation model of R&D projects with multiple performance factors : case of semiconductors industry : 반도체 사례를 중심으로 홍택승, 문새다슬, 이희연, 이덕주 p. 198-208

보기
네트워크 확장을 통한 GCN 기반 GitHub 코드 리뷰어 추천 시스템 = GCN-based reviewer recommendation in Github based on the network expansion 전병민, 금영정 p. 209-222

보기
해석가능 인공지능을 활용한 바이오화학 기술의 비즈니스 잠재성 평가 = Evaluating the business potential of bio-based chemical technologies using explainable AI 이지호, 이승현, 손은수, 윤장혁, 이재민 p. 223-236

보기
CAD와 BOM 데이터베이스 기반 자동 로봇 조립계획 시스템 아키텍처 개발 = Developing an architecture of an automated robot assembly planning system based on CAD and BOM databases 도남철, 한효녕, 조준면 p. 237-247

보기
제조품질 향상을 위한 데이터 전처리 프로세스 = Data pre-processing for manufacturing quality improvement 서호진, 김도현, 변재현 p. 248-257

보기
장면 이미지 속 한글 문자 인식을 위한 글자 단위 일관성 정규화 기반의 준지도학습 모델 = Korean scene text recognition using semi-supervised learning with character-level consistency regularization 김성수, 김성범 p. 258-266

보기
MADFlow = MADflow : multivariate time series anomaly detection via normalizing flow : Normalizing Flow를 활용한 다변량 시계열 이상 탐지 문지원, 송승환, 백준걸 p. 267-275

보기
칩 간 공간적 유사성과 검사항목의 상관관계를 고려한 반도체 웨이퍼 테스트 데이터의 결측치 대체 방법 개발 = Development of a missing value imputation method for semiconductor wafer test data considering spatial similarity among chips and correlation between test items 김주영, 배영목, 최승현, 김광재 p. 276-283

보기

참고문헌 (26건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Adeli, E., Zhang, J., and Taflanidis, A. A. (2021), Convolutional generative adversarial imputation networks for spatio-temporal missing data in storm surge simulations, arXiv preprint. 미소장
2 Aittokallio, T. (2010), Dealing with missing values in large-scale studies: microarray data imputation and beyond, Briefings in Bioinformatics, 11(2), 253-264. 미소장
3 Baek, S. and Lee, M. (2022), A Study on the Type Classification Model of Defective Semiconductor WafersUsing Deep Learning, Journal of the Korean Institute of Commucations and Information Sciences, 1158-1159. 미소장
4 Burkhardt, A., Berryman, S., Brio, A., Ferkau, S., Hubner, G., Lynch, K., ..., and Sonderer, K. (2018), Measuring Manufacturing Test Data Analysis Quality, In 2018 IEEE Autotestcon, 1-6. 미소장
5 Chandar, S., Khapra, M. M., Larochelle, H., and Ravindran, B. (2016), Correlational neural networks, Neural Computation, 28(2), 257-285. 미소장
6 Han, Y. and Lee, C. (2005), Automatic Classification of Failure Patterns in Semiconductor EDS Test for Yield Improvement, Journal of the Korea Society for Simulation, 14(1), 1-8. 미소장
7 Hsu, C. K., Lin, F., Cheng, K. T., Zhang, W., Li, X., Carulli, J. M., and Butler, K. M. (2013), Test Data Analytics - Exploring Spatial and test-item Correlations in Production Test Data, Proceedings -International Test Conference, ITC, 1-4. 미소장
8 Huang, K., Carulli, J. M., and Makris, Y. (2013), Counterfeit electronics: A rising 43 threat in the semiconductor manufacturing industry, Proceedings - International Test Conference, ITC, 1-4. 미소장
9 Jung, J. and Jung, Y. (2022), Wafer bin map failure pattern recognition using hierarchical clustering, Journal of Korean International Statistical Society, 35(3), 407-419. 미소장
10 Kang, H. and Baek, J. (2020), Improved Quality Prediction Method by Clustering Data in Semiconductor Manufacturing Process, Journal of the Korean Institute of Industrial Engineers, 46(2), 134-142. 미소장
11 Kim, D., Park, Y. S., Kim, H. W., Park, K. S., and Moon, I. K. (2022), Inventory policy for postponement strategy in the semiconductor industry with a die bank, Simulation Modelling Practice and Theory, 117, 102498. 미소장
12 Kim, S. and Kim, J. (2022), A study on the development strategy of the Metrology industry using the modified AHP and IPA, Journal of the Korean Institute of Plant Engineering, 27(2), 49-59. 미소장
13 Ko, G., Tak, H., and Lee, B. (2014), Impact of Missing Values on Survey Research and Relevancy of Multiple Imputation Techniques, Journal of the Korean Journal of Policy Analysis and Evaluation, 24(3), 49-75. 미소장
14 Lee, Y. H., Ham, M., Yoo, B., & Lee, J. S. (2009), Daily planning and scheduling system for the EDS process in a semiconductor manufacturing facility, The International Journal of Advanced Manufacturing Technology, 41(5), 568-579. 미소장
15 Lee, S. Y., Connerton, T. P., Lee, Y. -W., Kim, D., Kim, D., and Kim, J. -H. (2022), Semi-GAN: An Improved GAN-Based Missing Data Imputation Method for the Semiconductor Industry, IEEE Access, 10, 72328-7233. 미소장
16 Lee, Y. H., Ham, M., Yoo, B., and Lee, J. S. (2009), Daily planning and scheduling system for the EDS process in a semiconductor manufacturing facility, The International Journal of Advanced Manufacturing Technology, 41(5), 568-579. 미소장
17 Luo, M., Wang, S., Wang, C., Chen, W., Zhu, E., and Liu, X. (2022), DICDP: Deep Incomplete Clustering with Distribution Preserving, In International Conference on Artificial Intelligence and Security Springer, Cham, 162-175. 미소장
18 Nuhu, A. A., Zeeshan, Q., Safaei, B., and Shahzad, M. A. (2022), Machine learning-based techniques for fault diagnosis in the semiconductor manufacturing process: A comparative study, The Journal of Supercomputing, 1-51. 미소장
19 Park, J. and Kim, S. (2014), A Prediction Methodology of Package Chip Quality using Probe TestFail bit Count Data, Journal of the Korean Institute of Industrial Engineers, 528-536. 미소장
20 Schrunner, S. (2019), Pattern Recognition in Analog Wafer Test Data:A Health Factor for Process Patterns. Ph.D.diss, Graz University of Technology, Austria. 미소장
21 Tsung, C. K., Hsieh, H. Y., and Yang, C. T. (2019), An implementation of scalable high throughput data platform for logging semiconductor testing results, IEEE Access, 7, 26497-26506. 미소장
22 Van Buuren, S. and Groothuis-Oudshoorn, K. (2011), Mice:Multivariate imputation by chained equations in R, Journal of Statistical Software, 45, 1-67. 미소장
23 Wang, Y., Li, D., Li, X., and Yang, M. (2020), PC-GAIN: Pseudo-label Conditional Generative Adversarial Imputation Networks for Incomplete Data, Neural Networks, 141, 395-403. 미소장
24 Yeon, W. (2021), Conflict between the US and China and China's strategy and prospects for fostering the semiconductor industry, KIEP World Economy Focus, 39(4), 1-19. 미소장
25 Yoon, J., Jordon, J., and van der Schaar, M. (2018), GAIN: Missing Data Imputation using Generative Adversarial Nets, International Conference on Machine Learning, 5689-5698. 미소장
26 Zhang, Y. and Thorburn, P. J. (2022), Handling missing data in near real-time environmental monitoring: A system and a review of selected methods, Future Generation Computer Systems, 128, 63-72. 미소장