권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차 1
베어링 고장 진단을 위한 CNN 기반 딥러닝의 계산 복잡도 감소 기법 = Computation reduction method for CNN-based bearing fault diagnosis / 박재현 ; 김철홍 1
요약 1
Abstract 1
Ⅰ. 서론 2
Ⅱ. 베어링 고장 진단 기법 2
2-1. 베어링 특성 2
2-2. 베어링 고장 진단 기법 관련 연구 3
Ⅲ. 베어링 고장 진단 계산 복잡도 감소 기법 4
Ⅳ. 실험 방법 및 결과 4
4-1. 음향 방출 신호 수집 및 전처리 4
4-2. 베어링 고장 진단 결과 분석 5
4-3. 고강 진단 계산 복잡도 감소 기법 결과 분석 5
Ⅴ. 결론 6
참고문헌 6
[저자소개] 7
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | S. Muhammad and J.-M. Kim, “Fault Diagnosis of Rotary Machine Bearings Under Inconsistent Working Conditions,” IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 6, pp. 3334-3347, June 2020. https://doi.org/10.1109/TIM.2019.2933342 | 미소장 |
2 | M. Kang, M. R. Islam, J. Kim, J.-M. Kim, and M. Pecht, “A Hybrid Feature Selection Scheme for Reducing Diagnostic Performance Deterioration Caused by Outlines in Data-driven Diagnostics,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 5, pp. 3299-3310, May 2016. https://doi.org/10.1109/TIE.2016.2527623 | 미소장 |
3 | M. T. Pham, J.-M. Kim, and C. H. Kim, “Intelligent Fault Diagnosis Method Using Acoustic Emission Signals for Bearings Under Complex Working Conditions,” Applied Sciences, Vol. 10, No. 20, pp. 1-14, October 2020. https://doi.org/10.3390/app10207068 | 미소장 |
4 | H.-C. Park and S.-W. Lee, “CNN-Facilitated Color and Character Recognition in Practical Application,” The Journal of Korean Institute of Next Generation Computing, Vol. 12, No. 6, pp. 104-115, December 2016. | 미소장 |
5 | N. Khan, I. U. Haq, F. U. M. Ullah, M. Y. Lee, and S. W. Baik, “Efficient Sport Videos Classification via Convolutional Neural Network,” The Journal of Korean Institute of Next Generation Computing, Vol. 16, No. 6, pp. 7-16, December 2020. | 미소장 |
6 | J. H. Park and C. H. Kim, “Analysis of Accuracy and Computation Complexity of Bearing Fault Diagnosis Methods Using CNN-Based Deep Learning,” The Journal of Korean Institute of Next Generation Computing, Vol. 18, No. 1, pp. 7-18, February 2022. http://doi.org/10.23019/kingpc.18.1.202202.001 | 미소장 |
7 | R. B. Randall and J. Antoni, “Rolling Element Bearing Diagnostics—A Tutorial,” Mechanical Systems and Signal Processing, Vol. 25, No. 2, pp. 485-520, February 2011. https://doi.org/10.1016/j.ymssp.2010.07.017 | 미소장 |
8 | M. Bhadane and K. I. Ramachandran, “Bearing Fault Identification and Classification with Convolutional Neural Network,” in Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies, Kollam, India, pp. 1-5, April 2017. https://doi.org/10.1109/ICCPCT.2017.8074401 | 미소장 |
9 | M. Bai, J. Huang, M. Hong, and F. Su, “Fault Diagnosis of Rotating Machinery Using an Intelligent Order Tracking System,” Journal of Sound and Vibration, Vol. 280, No. 3-5, pp. 699-718, February 2005. https://doi.org/10.1016/j.jsv.2003.12.036 | 미소장 |
10 | H. Liu, L. Li, and J. Ma, “Rolling Bearing Fault Diagnosis Based on STFT-Deep Learning and Sound Signals,” Shock and Vibration, Vol. 2016, pp. 1-12, September 2016. https://doi.org/10.1155/2016/6127479 | 미소장 |
11 | Q. Sun and Y. Tang, “Singularity Analysis Using Continuous Wavelet Transform for Bearing Fault Diagnosis,” Mechanical Systems and Signal Processing, Vol. 16, No. 6, pp. 1025-1041, November 2002. https://doi.org/10.1006/mssp.2002.1474 | 미소장 |
12 | E. Choi and N. Park, “Application and Development of Machine Learning Training Program Based on Understanding K-NN Algorithm,” Journal of The Korean Association of Information Education, Vol. 25, No. 1, pp. 175-184, February 2021. http://dx.doi.org/10.14352/jkaie.2021.25.1.175 | 미소장 |
13 | Y.-B. Jo, W.-S. Na, S.-J. Eom, and Y.-J. Jeong, “Traffic Sign Recognition Using SVM and Decision Tree for Poor Driving Environment,” Journal of IKEEE, Vol. 18, No. 4, pp. 485-494, December 2014. http://dx.doi.org/10.7471/ikeee.2014.18.4.485 | 미소장 |
14 | J. H. Lee and J. G. Baek, “RTC(Real-Time Contrast) Control Chart Using Random Forest Based Multi-Class Classifier,” Journal of the Korean Institute of Industrial Engineers, Vol. 44, No. 4 pp. 306-315, August 2018. https://doi.org/10.7232/JKIIE.2018.44.4.306 | 미소장 |
15 | L.-L. Jiang, H.-K. Yin, X.-J. Li, and S.-W. Tang, “Fault Diagnosis of Rotating Machinery Based on Multisensor Information Fusion Using SVM and Time-Domain Features,” Shock and Vibration, Vol. 2014, 418178, April 2014. https://doi.org/10.1155/2014/418178 | 미소장 |
16 | H.-C. Lee, I.-H. Park, T.-H. Im, and D.-T. Moon, “CNN-Based Building Recognition Method Robust to Image Noises,” Journal of the Korea Institute of Information and Communication Engineering, Vol. 24, No. 3, pp. 341-348, March 2020.http://doi.org/10.6109/jkiice.2020.24.3.341 | 미소장 |
17 | H.-W. Lee, “Optimization of the Number of Filter in CNN Noise Attenuator,” The Journal of the Korea institute of Electronic Communication Sciences, Vol. 16, No. 4, pp. 625-632, August 2021.http://dx.doi.org/10.13067/JKIECS.2021.16.4.625 | 미소장 |
18 | K. Seo, “Evolutionary Computation Based CNN Filter Reduction,” The Transactions of the Korean Institute of Electrical Engineers, Vol. 67, No. 12, pp. 1665-1670, December 2018. http://doi.org/10.5370/KIEE.2018.67.12.1665 | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내04
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.