본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차 1

폴리올법으로 제조한 Ru 나노 촉매의 담체 특성에 따른 암모니아 분해 활성 연구 = Effect of support on the catalytic activity of Ru-based catalysts prepared by polyol method in NH3 decomposition reaction / 김경덕 ; 김지유 ; 정운호 ; 박용하 ; 이광복 ; 구기영 1

ABSTRACT 1

1. 서론 2

2. 실험 3

2.1. 촉매 제조 3

2.2. 촉매 특성 분석 3

2.3. 활성 실험 4

3. 결과 및 토의 4

3.1. 촉매 기본 특성 4

3.2. 암모니아 분해 반응 7

4. 결론 10

References 10

[저자소개] 13

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
CCS(Carbon Capture & Storage) 비즈니스 모델 탐색 = The proposal of CCS (carbon capture & storage) business model in Korea 유동헌 p. 1-8

보기
재생에너지 출력변동에 대응하기 위한 화력 발전소의 유연 운전 기술 = Flexible operation technologies of fossil power plants for responding to changes in renewable energy power output 이찬 p. 9-20

보기
블루수소 생산을 위한 파일롯급 석유코크스 가스화 실험 및 실증급가스화 성능 예측 = Pilot-class petroleum coke gasification experiment and performance prediction of demonstration-class gasification for blue hydrogen production 이진욱, 윤용승, 정석우, 이승종, 윤덕규, 이재용, 정우현, 정기진, 이지은, 류상오 p. 21-36

보기
폴리올법으로 제조한 Ru 나노 촉매의 담체 특성에 따른암모니아 분해 활성 연구 = Effect of support on the catalytic activity of Ru-based catalysts prepared by polyol method in NH3 decomposition reaction 김경덕, 김지유, 정운호, 박용하, 이광복, 구기영 p. 37-49

보기
탄산칼슘 기반 요오드칼륨 흡수제를 활용한 습식스크러버 기반질소산화물 및 황산화물 동시 제거 = Simultaneous removal of NOx and SOx with wet scrubber using CaCO3-based KI absorbent 이광택, 이예완, 김용진, 한방우, 김상복, 박인용, 이건희, 박대훈, 홍기정, 김학준 p. 50-60

보기
3D CFD 엔진 해석을 통한 바이오디젤 연료의 배기 배출물 저감 = Reduction of exhaust emissions from biodiesel fuel through 3D CFD engine analysis 송윤석, 서현규 p. 61-70

보기

참고문헌 (30건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Lee, H., Woo, Y., and Lee, M. J.: “The Needs for R& D of Ammonia Combustion Technology for Carbon Neutrality-Part Ⅰ Background and Economic Feasibility of Expanding the Supply of Fuel Ammonia,” J. Korean Soc. Combust., 26(1), 59-83 (2021). https://doi.org/10.15231/jksc.2021. 26.1.059 미소장
2 Lee, H., Woo, Y., and Lee, M. J.: “The Needs for R& D of Ammonia Combustion Technology for Carbon Neutrality-Part Ⅱ R& D Trends and Technical Feasibility Analysis,” J. Korean Soc. Combust., 26(1), 84-106 (2021). https://doi.org/10.15231/jksc.2021.26.1.084 미소장
3 Lamb, K. E., Dolan, M. D., and Kennedy, D. F.:“Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification,” Inter. J. Hydrog., 44(7), 3580-93 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.024 미소장
4 Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Lund, C. R., and Wu, G.: “Low-temperature ammonia decomposition catalysts for hydrogen generation,” Appl. Catal. B, 226, 162-81 (2018). https://doi.org/10.1016/j.apcatb.2017.12.039 미소장
5 Lucentini, I., Garcia, X., Vendrell, X., and Llorca, J.: “Review of the decomposition of ammonia to generate hydrogen,” Ind. Eng. Chem., 60(51), 18560-611 (2021). https://doi.org/10.1021/acs.iecr.1c00843 미소장
6 Chen, C., Wu, K., Ren, H., Zhou, C., Luo, Y., Lin, L., Au, C., and Jiang, L.: “Ru-based catalysts for ammonia decomposition: a mini-review,” Energ. Fuels, 35(15), 11693-706 (2021). https://doi.org/10.1021/acs.energyfuels.1c01261 미소장
7 Saadatjou, N., Jafari, A., and Sahebdelfar, S.:“Ruthenium nanocatalysts for ammonia synthesis:a review,” Chem. Eng. Commun., 202(4), 420-48(2015). https://doi.org/10.1080/00986445.2014. 923995 미소장
8 이호진, 박은덕: “수소 제조를 위한 암모니아 분해용 촉매 연구동향,” 에너지공학, 30(2), 8-19(2021). https://doi.org/10.5855/ENERGY.2021. 30.2.008 미소장
9 Axet, M. R. and Philippot, K.: “Catalysis with colloidal ruthenium nanoparticles,” Chem. rev., 120(2), 1085-145 (2020). https://doi.org/10.1021/acs.chemrev.9b00434 미소장
10 Fiévet, F., Ammar-Merah, S., Brayner, R., Chau, F., Giraud, M., Mammeri, F., Peron, J., Piquemal, J.-Y., Sicard, L., and Viau, G.: “The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions,”Chem. Soc. Rev., 47(14), 5187-233 (2018). https://10.1039/C7CS00777A 미소장
11 Kulkarni, S. R., Realpe, N., Yerrayya, A., Velisoju, V. K., Sayas, S., Morlanes, N., Cerillo, J., Katikaneni, S. P., Paglieri, S. N., and Solami, B.: “Elucidating the rate-determining step of ammonia decomposition on Ru-based catalysts using ab initio-grounded microkinetic modeling,” Catal. Sci. Technol., (2023). https://doi.org/10.1039/D3CY00055A 미소장
12 Jeon, N., Kim, S., Tayal, A., Oh, J., Yoon, W., Kim, W. B., and Yun, Y.: “Y-Doped BaCeO3Perovskite-Supported Ru Catalysts for COx-Free Hydrogen Production from Ammonia: Effect of Strong Metal-Support Interactions,” ACS Sustain. Chem. Eng., 10(47), 15564-73 (2022). https://doi. org/10.1021/acssuschemeng.2c04995 미소장
13 Kishida, K., Kitano, M., Inoue, Y., Sasase, M., Nakao, T., Tada, T., Abe, H., Niwa, Y., Yokoyama, T., and Hara, M.: “Large oblate hemispheroidal ruthenium particles supported on calcium amide as efficient catalysts for ammonia decomposition,”Chem. Eur. J., 24(31), 7976-84 (2018). https://doi.org/10.1002/chem.201800467 미소장
14 Hayashi, F., Toda, Y., Kanie, Y., Kitano, M., Inoue, Y., Yokoyama, T., Hara, M., and Hosono, H.:“Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7: e−,” Chem. Sci., 4(8), 3124-30 (2013). https://doi.org/10.1039/C3SC50794G 미소장
15 Sayas, S., Morlanés, N., Katikaneni, S. P., Harale, A., Solami, B., and Gascon, J.: “High pressure ammonia decomposition on Ru-K/CaO catalysts,”Catal. Sci. Technol., 10(15), 5027-35 (2020). https://10.1039/D0CY00686F 미소장
16 Fang, H., Wu, S., Ayvali, T., Zheng, J., Fellowes, J., Ho, P.-L., Leung, K. C., Large, A., Held, G., and Kato, R.: “Dispersed surface Ru ensembles on MgO (111) for catalytic ammonia decomposition,”Nat. Commun., 14(1), 647 (2023). https://doi.org/10.1038/s41467-023-36339-w 미소장
17 Wang, Z., Cai, Z., and Wei, Z.: “Highly Active Ruthenium Catalyst Supported on Barium Hexaaluminate for Ammonia Decomposition to COx-Free Hydrogen,” ACS Sustain. Chem. Eng., 7(9), 8226-35 (2019). https://doi.org/10.1021/acssuschemeng. 8b06308 미소장
18 Ju, X., Liu, L., Zhang, X., Feng, J., He, T., and Chen, P.: “Highly Efficient Ru/MgO Catalyst with Surface‐Enriched Basic Sites for Production of Hydrogen from Ammonia Decomposition,”ChemCatChem, 11(16), 4161-70 (2019). https://doi.org/10.1002/cctc.201900306 미소장
19 Le, T. A., Kim, Y., Kim, H. W., Lee, S.-U., Kim, J.-R., Kim, T.-W., Lee, Y.-J., and Chae, H.-J.:“Ru-supported lanthania-ceria composite as an efficient catalyst for COx-free H2 production from ammonia decomposition,” Appl. Catal. B, 285, 119831 (2021). https://doi.org/10.1016/j.apcatb. 2020.119831 미소장
20 Chin, S. Y., Williams, C. T., and Amiridis, M. D.:“FTIR studies of CO adsorption on Al2O3-and SiO2-supported Ru catalysts,” J. Phys. Chem., 110(2), 871-82 (2006). https://doi.org/10.1021/jp053908q 미소장
21 Aßmann, J., Löffler, E., Birkner, A., and Muhler, M.: “Ruthenium as oxidation catalyst: bridging the pressure and material gaps between ideal and real systems in heterogeneous catalysis by applying DRIFT spectroscopy and the TAP reactor,” Catal. today, 85(2-4), 235-49 (2003). https://doi.org/10. 1016/S0920-5861(03)00391-2 미소장
22 Nakamura, I., Kubo, H., and Fujitani, T.: “Critical role of Cs doping in the structure and NH3 decomposition performance of Ru/MgO catalysts,” Appl, Catal. A Gen., 644, 118806 (2022). https://doi. org/10.1016/j.apcata.2022.118806 미소장
23 Kang, S., Cha, J., Jo, Y. S., Lee, Y. J., Sohn, H., Kim, Y., Song, C. K., Kim, Y., Lim, D. H., and Park, J.: “Heteroepitaxial Growth of B5‐Site‐Rich Ru Nanoparticles Guided by Hexagonal Boron Nitride for Low‐Temperature Ammonia Dehydrogenation,” Adv. Mater., 35(4), 2203364(2023). https://doi.org/10.1002/adma.202203364 미소장
24 Zhang, X., Liu, L., Feng, J., Ju, X., Wang, J., He, T., and Chen, P.: “Ru nanoparticles on Pr2O3 as an efficient catalyst for hydrogen production from ammonia decomposition,” Catal. Letters, 152(4), 1170-81 (2022). https://doi.org/10.1007/s10562-021-03709-2 미소장
25 Dupin, J.-C., Gonbeau, D., Vinatier, P., and Levasseur, A.: “Systematic XPS studies of metal oxides, hydroxides and peroxides,” Phys. Chem. Chem. Phys., 2(6), 1319-24 (2000). https://doi. org/10.1039/A908800H 미소장
26 Lucentini, I., Casanovas, A., and Llorca, J.: “Catalytic ammonia decomposition for hydrogen production on Ni, Ru and NiRu supported on CeO2,” Inter. J. Hydrog., 44(25), 12693-707 (2019). https://doi. org/10.1016/j.ijhydene.2019.01.154 미소장
27 Kitano, M., Inoue, Y., Yamazaki, Y., Hayashi, F., Kanbara, S., Matsuishi, S., Yokoyama, T., Kim, S.-W., Hara, M., and Hosono, H.: “Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store,” Nat. Chem., 4(11), 934-40 (2012). https://doi.org/10.1038/nchem. 1476 미소장
28 Xie, P., Yao, Y., Huang, Z., Liu, Z., Zhang, J., Li, T., Wang, G., Shahbazian-Yassar, R., Hu, L., and Wang, C.: “Highly efficient decomposition of ammonia using high-entropy alloy catalysts,” Nat. Commun., 10(1), 4011 (2019). https://doi.org/10. 1038/s41467-019-11848-9 미소장
29 Ju, X., Liu, L., Yu, P., Guo, J., Zhang, X., He, T., Wu, G., and Chen, P.: “Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition,” Appl. Catal. B, 211, 167-75 (2017). https://doi.org/10. 1016/j.apcatb.2017.04.043 미소장
30 Zhang, X., Liu, L., Feng, J., Ju, X., Wang, J., He, T., and Chen, P.: “Metal-support interactionmodulated catalytic activity of Ru nanoparticles on Sm2O3 for efficient ammonia decomposition,”Catal. Sci. Technol., 11(8), 2915-23 (2021). https://10.1039/D1CY00080B 미소장