권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.
번호 | 참고문헌 | 국회도서관 소장유무 |
---|---|---|
1 | J.W. Yeon, I.K. Choi, K.K. Park, H.M. Kwon, K. Song, Chemical analysis of fuel crud obtained from Korean nuclear power plants, J. Nucl. Mater. 404 (2010)160-164, https://doi.org/10.1016/j.jnucmat.2010.07.024. | 미소장 |
2 | J. Deshon, Evaluation of Fuel Cladding Corrosion and Corrosion Product Deposits from Callaway Cycle, 14, 2006. Palo Alto, CA, www.epri.com. | 미소장 |
3 | G. Wang, A. Byers, M. Young, Simulated Fuel Crud Thermal Conductivity Measurements under Pressurized Water Reactor Conditions, 2011. Palo Alto, CA, www.epri.com. | 미소장 |
4 | J. Deshon, D. Hussey, B. Kendrick, J. Mcgurk, J. Secker, M. Short, Pressurized water reactor fuel crud and corrosion modeling, JOM 63 (2011) 64-72. www. tms.org/jom.html. | 미소장 |
5 | M.P. Short, D. Hussey, B.K. Kendrick, T.M. Besmann, C.R. Stanek, S. Yip, Multiphysics modeling of porous CRUD deposits in nuclear reactors, J. Nucl. Mater. 443 (2013) 579-587, https://doi.org/10.1016/j.jnucmat.2013.08.014. | 미소장 |
6 | P. Cohen, Heat and mass transfer for boiling in porous deposits with chimenys, AlChe Symphsium Series 70 (1972) 71-80. | 미소장 |
7 | C. Pan, B.G. Jones, A.J. Machiels, Concentration levels of solutes in porous deposits with chimneys under WICK boiling conditions, Nucl. Eng. Des. 99(1987) 317-327. | 미소장 |
8 | D.Y. Yeo, H.C. No, Modeling heat transfer through chimney-structured porous deposit formed in pressurized water reactors, Int. J. Heat Mass Tran. 108 (2017)868-879, https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.12.046. | 미소장 |
9 | J. Henshaw, J.C. McGurk, H.E. Sims, A. Tuson, S. Dickinson, J. Deshon, A model of chemistry and thermal hydraulics in PWR fuel crud deposits, J. Nucl. Mater. 353 (2006) 1-11, https://doi.org/10.1016/J.JNUCMAT.2005.01.028. | 미소장 |
10 | I.U. Haq, N. Cinosi, M. Bluck, G. Hewitt, S. Walker, Modelling heat transfer and dissolved species concentrations within PWR crud, Nucl. Eng. Des. 241 (2011)155-162, https://doi.org/10.1016/J.NUCENGDES.2010.10.018. | 미소장 |
11 | N. Cinosi, I. Haq, M. Bluck, S.P. Walker, The effective thermal conductivity of crud and heat transfer from crud-coated PWR fuel, Nucl. Eng. Des. 241 (2011)792-798, https://doi.org/10.1016/J.NUCENGDES.2010.12.015. | 미소장 |
12 | S. Seo, B. Park, S.J. Kim, H.C. Shin, S.J. Lee, M. Lee, S. Choi, BOTANI: high-fidelity multiphysics model for boron chemistry in CRUD deposits, Nucl. Eng. Technol. 53 (2021) 1676-1685, https://doi.org/10.1016/J.NET.2020.11.008. | 미소장 |
13 | D.Y. Yeo, H.C. No, Modeling film boiling within chimney-structured porous media and heat pipes, Int. J. Heat Mass Tran. 124 (2018) 576-585, https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.03.093. | 미소장 |
14 | M. Jin, M. Short, Multiphysics modeling of two-phase film boiling within porous corrosion deposits, J. Comput. Phys. 316 (2016) 504-518, https://doi.org/10.1016/J.JCP.2016.03.013. | 미소장 |
15 | P. Saha, N. Aksan, J. Andersen, J. Yan, J.P. Simoneau, L. Leung, F. Bertrand, K. Aoto, H. Kamide, Issues and future direction of thermal-hydraulics research and development in nuclear power reactors, Nucl. Eng. Des. 264 (2013) 3-23, https://doi.org/10.1016/j.nucengdes.2012.07.023. | 미소장 |
16 | J. Deshon, PWR Axial Offset Anomaly (AOA) Guidelines, Revision 1, Palo Alto, CA, 2004. | 미소장 |
17 | R. Hu, M.S. Kazimi, M.E. Leyse, CONSIDERING THE THERMAL RESISTANCE OF CRUD IN LOCA ANALYSIS, 101, Transaction of the American Nuclear Society, 2009, pp. 590-592. | 미소장 |
18 | J. Lee, H. Jeong, Y. Bang, Thermal resistance effects of crud and oxide layers to the safety analysis, in: 2018 TOPFUEL, Prague, Czech Republic, 2018. | 미소장 |
19 | I. Dumnernchanvanit, N.Q. Zhang, S. Robertson, A. Delmore, M.B. Carlson, D. Hussey, M.P. Short, Initial experimental evaluation of crud-resistant materials for light water reactors, J. Nucl. Mater. 498 (2018) 1-8, https://doi.org/10.1016/J.JNUCMAT.2017.10.010. | 미소장 |
20 | S.H. Baek, H.S. Shim, J.G. Kim, D.H. Hur, Effect of chemical etching of fuel cladding surface on crud deposition behavior in simulated primary water of PWRs at 328 °C, Ann. Nucl. Energy 116 (2018) 69-77, https://doi.org/10.1016/J.ANUCENE.2018.02.030. | 미소장 |
21 | S.H. Baek, H.S. Shim, J.G. Kim, D.H. Hur, Effects of heat flux on fuel crud deposition and sub-cooled nucleate boiling in simulated PWR primary water at 13 MPa, Ann. Nucl. Energy 133 (2019) 178-185, https://doi.org/10.1016/J.ANUCENE.2019.05.022. | 미소장 |
22 | W.A. Byers, G. Wang, M.Y. Young, J. Deshon, Simulation of PWR crud, in:ICONE22, Prague, Czech Republic, 2014. | 미소장 |
23 | G. Wang, W.A. Byers, M.Y. Young, J. Deshon, Z. Karoutas, R.L. Oelrich, Thermal conductivity measurement for simulated PWR crud, in: ICONE21, Chengdu, China, 2013. | 미소장 |
24 | Z. Karoutas, G. Wang, W.A. Byers, Critical heat flux and crud WALT loop measurements for westinghouse accident tolerant fuel, in: 2019 TOPFUEL, Seattle, WA, 2019. | 미소장 |
25 | R. v Macbeth, R. Trenberth, R.W. Wood, An Investigation into the Effect of “CRUD” Deposits on Surface Temperature, Dry-Out and Pressure Drop, with Forced Convection Boiling of Water at 69 Bar in an Annular Test Section, UKAEA Reactor Group, 1971. | 미소장 |
26 | J. Buongiorno, Can corrosion and CRUD actually improve safety margins in LWRs? Ann. Nucl. Energy 63 (2014) 9-21, https://doi.org/10.1016/j.anucene.2013.07.019. | 미소장 |
27 | J.Y. Kim, H.J. Kim, I.C. Bang, Design study of CRUD thermal properties characterization facility DISNY under pressurized water reactor normal operating condition, in: Advances in Thermal Hydraulics, ATH 2022), Anaheim, CA, USA, 2022, pp. 563-574, https://doi.org/10.13182/T126-38228. | 미소장 |
28 | J.Y. Kim, Y. Lee, J. Ham, J.H. Kim, I.C. Bang, Establishment of experimental facility to investigate the sub-cooled boiling heat transfer characteristics of fouled cladding surface at PWR conditions, The KSFM Journal of Fluid Machinery 25 (2022) 12-21, https://doi.org/10.5293/kfma.2022.25.5.012. | 미소장 |
29 | Khnp, Final Safety Analysis Report for Hanbit Unit 5, 6, 1997 (Chapter 4). | 미소장 |
30 | Khnp, Final Safety Analysis Report for Shin-Kori Unit 3, 4, 2008 (Chapter 4). | 미소장 |
31 | B.A. Khuwaileh, F.I. Al-Hamadi, D. Hartanto, Z. Said, M. Ali, On the performance of nanofluids in APR 1400 PLUS7 assembly: neutronics, Ann. Nucl. Energy 144 (2020), 107508, https://doi.org/10.1016/J.ANUCENE.2020.107508. | 미소장 |
32 | J.-J. Jeong, K.S. Ha, B.D. Chung, W.J. Lee, Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3. 1, Ann. Nucl. Energy 26 (1999)1611-1642. | 미소장 |
33 | J.A. Sawicki, Characterization of Corrosion Products on the Callaway Cycle 9PWR Core, 2001, https://doi.org/10.13140/2.1.3645.4087. Palo Alto, CA. | 미소장 |
34 | J. Ham, Y. Lee, S.C. Yoo, M.P. Short, C.B. Bahn, J.H. Kim, Effect of TiN coating on the fouling behavior of crud on pressurized water reactor fuel cladding, J. Nucl. Mater. 549 (2021), 152870, https://doi.org/10.1016/J.JNUCMAT.2021.152870. | 미소장 |
35 | Y. Lee, S.C. Yoo, D. Park, J. Ham, J.H. Kim, Chemistry change of CRUD with various metal ion concentration conditions in PWR fuel cladding, in: 20th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Springer, Snowmass Village, CO, USA, 2022. | 미소장 |
36 | Y. Lee, J. Ham, D.H. Park, S.C. Yoo, J.H. Kim, Microstructure change of crud with various heat flux conditions, in: PWR FUEL CLADDING, 2021TOPFUEL, Santander, Spain, 2021. | 미소장 |
37 | H.W. Coleman, W.G. Steele, Experimentation, Validation, and Uncertainty Analysis for Engineers, John Wiley & Sons, 2018. | 미소장 |
38 | M. Awais, A.A. Bhuiyan, Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers, Int. J. Heat Mass Tran. 141(2019) 580-603, https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.07.011. | 미소장 |
39 | A. Fguiri, C. Marvillet, M.R. Jeday, Estimation of fouling resistance in a phosphoric acid/steam heat exchanger using inverse method, Appl. Therm. Eng. 192(2021), 116935, https://doi.org/10.1016/J.APPLTHERMALENG.2021.116935. | 미소장 |
40 | T.L. Bergman, T.L. Bergman, F.P. Incropera, D.P. Dewitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2011. | 미소장 |
41 | G. Wang, Improved CRUD Heat Transfer Model for Dryout on Fuel Pin Surfaces at PWR Operating Conditions, Doctoral thesis, Pennsylvania State University, 2009. | 미소장 |
42 | J.B. Lee, Description Report of ATLAS Facility and Instrumentation (Third Revision), Deajeon, Korea, 2020. | 미소장 |
43 | J.H. Lienhard, On the commonality of equations for natural convection from immersed bodies, Int. J. Heat Mass Tran. 16 (1973) 2121-2123, https://doi.org/10.1016/0017-9310(73)90116-6. | 미소장 |
44 | F.W. Dittus, L.M.K. Boelter, Heat Transfer in Automobile Radiators of Tubular Type, 443-461, 2, Berkeley Univ. California. Publ. Eng., 1930, p. 13. | 미소장 |
45 | W.H. Jens, P.A. Lottes, Analysis of Heat Transfer, Burnout, Pressure Drop and Density Date for High-Pressure Water, Argonne National Lab., 1951. | 미소장 |
46 | J.R.S. Thom, W.M. Walker, T.A. Fallon, G.F.S. Reising, Boiling in Subcooled Water during Flow up Heated Tubes or Annuli, Paper Presented at the Symposium on Boiling Heat Transfer in Steam Generating Units and Heat Exchangers, Manchester, England. September 15-16, 1965. Cited in JG Collier, Convective Boiling , Cited in JG Collier, Convective Boiling and Condensation. (1972). | 미소장 |
47 | J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (1966) 322-329. | 미소장 |
48 | H.K. Forster, N. Zuber, Dynamics of vapor bubbles and boiling heat transfer, AIChE J. 1 (1955) 531-535. | 미소장 |
49 | Youngjae Park, Experimental Study about the Effects of CRUD on Quenching Heat Transfer of Simulated Fuel Rod in Single Flow Channel under PWR Reflood Flow Conditions, Doctoral thesis, Kyunghee University, 2021. | 미소장 |
50 | C. Sauder, Ceramic Matrix Composites: Nuclear Applications, Ceramic Matrix Composites: Materials, Modeling and Technology, 2014, pp. 609-646. | 미소장 |
51 | D. Lee, B. Elward, P. Brooks, R. Umretiya, J. Rojas, M. Bucci, R.B. Rebak, M. Anderson, Enhanced flow boiling heat transfer on chromium coated zircaloy-4 using cold spray technique for accident tolerant fuel (ATF) materials, Appl. Therm. Eng. 185 (2021), 116347, https://doi.org/10.1016/J.APPLTHERMALENG.2020.116347. | 미소장 |
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.