본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Contents 1

Bandgap engineering in CZTSSe thin films via controlling S/(S+Se) ratio / Vijay C. Karade ; Jun Sung Jang ; Kuldeep Singh Gour ; Yeonwoo Park ; Hyeonwook Park ; Jin Hyeok Kim ; Jae Ho Yun 1

ABSTRACT 1

1. Introduction 1

2. Materials and Methods 2

2.1. Stacked Metallic precursor preparation 2

2.2. CZTSSe absorber preparation 2

2.3. Device fabrication process 2

2.4. Analysis of CZTSSe thin films and devices 2

3. Results and discussion 2

3.1. Compositional and morphological properties 2

3.2. Optical and electrical properties 4

4. Conclusions 6

References 7

초록보기

The earth-abundant element-based Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells (TFSCs) have attracted greater attention in the photovoltaic (PV) community due to their rapid development in device power conversion efficiency (PCE) >13%. In the present work, we demonstrated the fine-tuning of the bandgap in the CZTSSe TFSCs by altering the sulfur (S) to the selenium (Se) chalcogenide ratio. To achieve this, the CZTSSe absorber layers are fabricated with different S/(S+Se) ratios from 0.02 to 0.08 of their weight percentage. Further compositional, morphological, and optoelectronic properties are studied using various characterization techniques. It is observed that the change in the S/(S+Se) ratios has minimal impact on the overall Cu/(Zn+Sn) composition ratio. In contrast, the S and Se content within the CZTSSe absorber layer gets altered with a change in the S/(S+Se) ratio. It also influences the overall absorber quality and gets worse at higher S/(S+Se). Furthermore, the device performance evaluated for similar CZTSSe TFSCs showed a linear increase and decrease in the open circuit voltage (Voc) and short circuit current density (Jsc) of the device with an increasing S/(S+Se) ratio. The external quantum efficiency (EQE) measured also exhibited a linear blue shift in absorption edge, increasing the bandgap from 1.056 eV to 1.228 eV, respectively.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Bandgap engineering in CZTSSe thin films via controlling S/(S+Se) ratio Vijay C. Karade, Jun Sung Jang, Kuldeep Singh Gour, Yeonwoo Park, Hyeonwook Park, Jin Hyeok Kim, Jae Ho Yun p. 67-74

보기
가로세로 폭의 제어가 가능한 슁글드 디자인 태양광 모듈 제조 = Fabrication of shingled design solar module with controllable horizontal and vertical width 박민준, 김민섭, 이은비, 김유진, 정채환 p. 75-78

보기
PM6:Y6를 기반으로 한 삼중 혼합 유기 태양전지 동향 = Ternary blend organic solar cells trends based on PM6:Y6 윤동환, 신광용, 정윤혜, 하영우, 김기환 p. 79-86

보기
페로브스카이트 실내 광전변환 효율 향상을 위한 ethylenediamine 기반의 표면 결함 부동화 연구 = Ethylenediamine based surface defect passivation for enhancing indoor photovoltaic efficiency of perovskite 강석범, 윤주웅, 김창용, 이상헌, 이혜민, 김동회 p. 87-95

보기
주석-납 기반 페로브스카이트 고농도 전구체 용액을 이용한 광전류 향상 연구 = Study for improved photocurrent via high concentrated tin-lead perovskite precursor solution 홍효진, 이승민, 임정민, 노준홍 p. 96-102

보기

참고문헌 (29건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Song, S., Lin, H., Sherman, P., Yang, X., Chen, S., Lu, X., Lu, T., Chen, X., McElroy, M. B., “Deep Decarbonization of the Indian Economy: 2050 Prospects for Wind, Solar, and Green Hydrogen,” iScience 2022, 25(6), 104399. https://doi.org/10.1016/j.isci.2022.104399. 미소장
2 van Ruijven, B. J., De Cian, E., Sue Wing, I., “Amplification of Future Energy Demand Growth Due to Climate Change,” Nat. Commun, 10(1), 2762 (2019). https://doi.org/10.1038/s41467-019-10399-3. 미소장
3 Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H., “Cd-Free Cu(In,Ga)(Se,S) 2 Thin-Film Solar Cell With Record Efficiency of 23.35%,” IEEE J. Photovoltaics, 9(6), 1863-1867 (2019). https://doi.org/10.1109/JPHOTOV. 2019.2937218. 미소장
4 Shin, D., Saparov, B., Mitzi, D. B., “Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials,”Adv. Energy Mater., 7(11), 1602366 (2017). https://doi.org/10.1002/aenm.201602366. 미소장
5 Karade, V. C., Sutar, S. S., Shin, S. W., Suryawanshi, M. P., Jang, J. S., Gour, K. S., Kamat, R. K., Yun, J. H., Dongale, T. D., Kim, J. H., “Machine Learning Assisted Analysis, Prediction, and Fabrication of High‐Efficiency CZTSSe Thin Film Solar Cells,” Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202303459. 미소장
6 Gong, Y., Zhu, Q., Li, B., Wang, S., Duan, B., Lou, L., Xiang, C., Jedlicka, E., Giridharagopal, R., Zhou, Y., Dai, Q., Yan, W., Chen, S., Meng, Q., Xin, H., “Elemental De-Mixing-Induced Epitaxial Kesterite/CdS Interface Enabling 13%-Efficiency Kesterite Solar Cells,” Nat. Energy, 7(10), 966-977 (2022). https://doi.org/10.1038/s41560-022-01132-4. 미소장
7 Karade, V. C., Lim, J., Gour, K. S., Jang, J. S., Shin, S. J., Kim, J. H., Yang, B. S., Choi, H., Enkhbat, T., Kim, J., Yun, J. S., Jang, H. N., Yun, J. H., Park, J., Kim, J. H., “Overcoming the Limitations of Low-Bandgap Cu 2 ZnSn(S,Se) 4 Devices under Indoor Light Conditions: From Design to Prototype IoT Application,” J. Mater. Chem. A, 10(44), 23831-23842 (2022). https://doi.org/10.1039/D2TA06565G. 미소장
8 Gour, K. S., Karade, V., Babar, P., Park, J., Lee, D. M., Singh, V. N., Kim, J. H., “Potential Role of Kesterites in Development of Earth‐Abundant Elements‐Based Next Generation Technology,”Sol. RRL, 5(4), 2000815 (2021). https://doi.org/10.1002/solr. 202000815. 미소장
9 Park, J., Yoo, H., Karade, V., Gour, K. S., Choi, E., Kim, M., Hao, X., Shin, S. J., Kim, J., Shim, H., Kim, D., Kim, J. hyeok, Yun, J., Kim, J. hyeok., “Investigation of Low Intensity Light Performances of Kesterite CZTSe, CZTSSe, and CZTS Thin Film Solar Cells for Indoor Applications,” J. Mater. Chem. A, 8(29), 14538-14544 (2020). https://doi.org/10.1039/D0TA04863A. 미소장
10 Zhou, J., Xu, X., Wu, H., Wang, J., Lou, L., Yin, K., Gong, Y., Shi, J., Luo, Y., Li, D., Xin, H., Meng, Q., “Control of the Phase Evolution of Kesterite by Tuning of the Selenium Partial Pressure for Solar Cells with 13.8% Certified Efficiency,” Nat. Energy, 8(5), 526-535 (2023). https://doi.org/10.1038/s41560-023-01251-6. 미소장
11 Kumar, M., Dubey, A., Adhikari, N., Venkatesan, S., Qiao, Q., “Strategic Review of Secondary Phases, Defects and Defect Complexes in Kesterite CZTS-Se Solar Cells. Energy Environ,”Sci., 8(11), 3134-3159 (2015). https://doi.org/10.1039/C5EE 02153G. 미소장
12 Kaur, K., Kumar, N., Kumar, M., “Strategic Review of Interface Carrier Recombination in Earth Abundant Cu-Zn-Sn-S-Se Solar Cells: Current Challenges and Future Prospects,” J. Mater. Chem. A, 5(7), 3069-3090 (2017). https://doi.org/10.1039/C6TA10543B. 미소장
13 Chen, S., Gong, X. G., Walsh, A., Wei, S.-H., “Defect Physics of the Kesterite Thin-Film Solar Cell Absorber Cu2ZnSnS4,”Appl. Phys. Lett., 96(2), 021902 (2010). https://doi.org/10.1063/1.3275796. 미소장
14 Kim, Y.-C., Jeong, H.-J., Lee, S. K., Kim, S.-T., Jang, J.-H., “The Effect of S/(S+Se) Ratios on the Formation of Secondary Phases in the Band Gap Graded Cu2ZnSn(S,Se)4 Thin Film Solar Cells,” J. Alloys Compd., 793, 289-294 (2019). https://doi.org/10.1016/j.jallcom.2019.04.118. 미소장
15 Yu, J., Deng, H., Zhang, Q., Tao, J., Sun, L., Yang, P., Chu, J., “The Role of Tuning Se/(S + Se) Ratio in the Improvement of Cu2MnSn(S, Se)4 Thin Films Properties and Photovoltaic Device Performance,” Sol. Energy, 179, 279-285 (2019). https://doi.org/10.1016/j.solener.2018.12.076. 미소장
16 Shockley, W., “Queisser, H. J. Detailed Balance Limit of Efficiency of P-n Junction Solar Cells,” J. Appl. Phys., 32(3), 510-519 (1961). https://doi.org/10.1063/1.1736034. 미소장
17 Gohri, S., Madan, J., Pandey, R., Sharma, R., “Design and Analysis of Lead-Free Perovskite-CZTSSe Based Tandem Solar Cell,” Opt. Quantum Electron., 55(2), 171 (2023). https://doi. org/10.1007/s11082-022-04381-5. 미소장
18 Wang, D., Guo, H., Wu, X., Deng, X., Li, F., Li, Z., Lin, F., Zhu, Z., Zhang, Y., Xu, B., Jen, A. K. ‐Y., “Interfacial Engineering of Wide‐Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells,” Adv. Funct. Mater., 32(2), 2107359(2022). https://doi.org/10.1002/adfm.202107359. 미소장
19 Karade, V. C., Suryawanshi, M. P., Jang, J. S., Gour, K. S., Jang, S., Park, J., Kim, J. H., Shin, S. W., “Understanding Defects and Band Tailing Characteristics and Their Impact on the Device Performance of Cu 2 ZnSn(S,Se) 4 Solar Cells,” J. Mater. Chem. A, 10 (15), 8466-8478 (2022). https://doi.org/10.1039/D2TA00165A. 미소장
20 Karade, V., Choi, E., Gang, M. G., Yoo, H., Lokhande, A., Babar, P., Jang, J. S., Seidel, J., Yun, J. S., Park, J., Kim, J. H., “Achieving Low V OC -Deficit Characteristics in Cu 2 ZnSn (S,Se) 4 Solar Cells through Improved Carrier Separation,”ACS Appl. Mater. Interfaces, 13(1), 429-437 (2021). https://doi.org/10.1021/acsami.0c16936. 미소장
21 Xie, H., Dimitrievska, M., Fontané, X., Sánchez, Y., López Marino, S., Izquierdo-Roca, V., Bermúdez, V., Pérez-Rodríguez, A., Saucedo, E., “Formation and Impact of Secondary Phases in Cu-Poor Zn-Rich Cu2ZnSn(S1−Se )4 (0≤y≤1) Based Solar Cells,” Sol. Energy Mater. Sol. Cells, 140, 289-298 (2015). https://doi.org/10.1016/j.solmat.2015.04.023. 미소장
22 Li, J., Kim, S. Y., Nam, D., Liu, X., Kim, J. H., Cheong, H., Liu, W., Li, H., Sun, Y., Zhang, Y., “Tailoring the Defects and Carrier Density for beyond 10% Efficient CZTSe Thin Film Solar Cells,” Sol. Energy Mater. Sol. Cells, 159, 447-455(2017). https://doi.org/10.1016/J.SOLMAT.2016.09.034. 미소장
23 Singh, O. P., Vijayan, N., Sood, K. N., Singh, B. P., Singh, V. N., “Controlled Substitution of S by Se in Reactively Sputtered CZTSSe Thin Films for Solar Cells,” J. Alloys Compd., 648, 595-600 (2015). https://doi.org/10.1016/j.jallcom.2015.06.276. 미소장
24 Just, J., Sutter-Fella, C. M., Lützenkirchen-Hecht, D., Frahm, R., Schorr, S., Unold, T., “Secondary Phases and Their Influence on the Composition of the Kesterite Phase in CZTS and CZTSe Thin Films,” Phys. Chem. Chem. Phys., 18(23), 15988-15994(2016). https://doi.org/10.1039/C6CP00178E. 미소장
25 Sravani, L., Routray, S., Pradhan, K. P., Piedrahita, M. C., “Kesterite Thin‐Film Solar Cell: Role of Grain Boundaries and Defects in Copper-Zinc-Tin-Sulfide and Copper-Zinc-Tin Selenide,” Phys. status solidi, 218(16), 2100039 (2021). https://doi.org/10.1002/pssa.202100039. 미소장
26 Nisika, Kaur, K., Kumar, M., “Progress and Prospects of CZTSSe/CdS Interface Engineering to Combat High Open Circuit Voltage Deficit of Kesterite Photovoltaics: A Critical Review,” J. Mater. Chem. A, 8(41), 21547-21584 (2020). https://doi.org/10.1039/d0ta06450e. 미소장
27 Zeng, C., Liang, Y., Zeng, L., Zhang, L., Zhou, J., Huang, P., Hong, R., “Effect of S/(S+Se) Ratio during the Annealing Process on the Performance of Cu2ZnSn(S,Se)4 Solar Cells Prepared by Sputtering from a Quaternary Target,” Sol. Energy Mater. Sol. Cells, 203, 110167 (2019). https://doi.org/10.1016/j.solmat.2019.110167. 미소장
28 Lee, J., Enkhbat, T., Han, G., Sharif, M. H., Enkhbayar, E., Yoo, H., Kim, J. H., Kim, S. Y., Kim, J. H., “Over 11 %Efficient Eco-Friendly Kesterite Solar Cell: Effects of S-Enriched Surface of Cu2ZnSn(S,Se)4 Absorber and Band Gap Controlled (Zn,Sn)O Buffer,” Nano Energy, 78, 105206 (2020). https://doi.org/10.1016/J.NANOEN.2020.105206. 미소장
29 Guo, H., Meng, R., Wang, G., Wang, S., Wu, L., Li, J., Wang, Z., Dong, J., Hao, X., Zhang, Y., “Band-Gap-Graded Cu 2ZnSn(S,Se) 4 Drives Highly Efficient Solar Cells,” Energy Environ. Sci., 15(2), 693-704 (2022). https://doi.org/10.1039/D1EE03134A. 미소장