권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
대형 산림화재를 예방하기 위해 산림화재의 조기발견은 매우 중요하다. 조기발견을 위한 하나의 방안으로 산림화재 발생 예측이 고려되고 있으며 다양한 관련 연구가 진행되었다. 그러나 대다수의 선행연구가 산림화재의 주요 발화 원인 중의 하나인 인적요인을 고려하지 않고 기상요인과 지리적 요인만을 주로 다루고 있다. 따라서 본 연구는 기상 및 지리적 요인뿐만 아니라 인적요인을 고려한 산림화재 예측모형을 개발하기 위해 2003년부터 2020년까지의 강원도 산림화재 데이터를 활용하여 로지스틱 회귀모형과 다양한 머신러닝 기법 기반의 예측모형을 개발하고 성능을 비교분석하였다. 성능분석 결과, 머신러닝 기법인 랜덤 포레스트(AUC=0.920)와 XG Boost 모형(AUC=0.925)이 가장 우수한 성능을 나타냈다. 운영시사점을 도출하기 위해 순열특성중요도 분석을 활용하여 요인들의 상대적 중요도를 분석하였으며, 기상요인이 인적요인보다 높은 영향도를 나타냈지만 다양한 인적요인도 유효한 것으로 확인되었다.
Early detection of forest fires is essential in preventing large-scale forest fires. Predicting forest fires serves as a vital early detection method, leading to various related studies. However, many previous studies focused solely on climate and geographic factors, overlooking human factors, which significantly contribute to forest fires. This study aims to develop forest fire prediction models that take into account human, weather and geographical factors. This study conducted a comparative analysis of four machine learning models alongside the logistic regression model, using forest fire data from Gangwon-do spanning 2003 to 2020. The results indicate that XG Boost models performed the best (AUC=0.925), closely followed by Random Forest (AUC=0.920), both of which are machine learning techniques. Lastly, the study analyzed the relative importance of various factors through permutation feature importance analysis to derive operational insights. While meteorological factors showed a greater impact compared to human factors, various human factors were also found to be significant.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.