본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
탄소중립을 지향하는 전기화학적 이온 분리(EIONS) 기술 = Electrochemical ion separation technology for carbon neutrality 주화주, 안재욱, 전성일, 윤제용 p. 331-346
액정 엘라스토머 섬유의 이해와 연구동향 = Understanding and research trends in liquid crystal elastomer fibers 김영빈, 김대석 p. 347-356
넓은 작동 온도범위를 가지는 V2O5-WO3/TiO2 SCR 촉매 개발을 위한 티타늄 이소프로폭사이드(TTIP) 활용 전략 = Titanium isopropoxide (TTIP) treatment strategy for V2O5-WO3/TiO2 SCR catalysts with a wide operating temperature 이재호, 조광훈, 이금연, 임창용, 이영세, 김태욱 p. 357-364
Effective approaches to preventing dendrite growth in lithium metal anodes : a review Jaeyun Ha, Jinhee Lee, Yong-Tae Kim, Jinsub Choi p. 365-382
성막 공정 정밀도 향상을 위한 실시간 성막 속도 측정 시스템 = In-situ deposition rate measurement system to improve the accuracy of the film formation process 박소미, 백승요, 김현빈, 이종희, 이재현 p. 383-387
새로운 Chung's equation-XII에 의한 연소성 물질의 화재위험성지수 및 등급 평가 = Fire risk index and grade evaluation of combustible materials by the new Chung's equation-XII 정영진, 진의 p. 388-396
불소계 계면활성제 첨가가 탄화수소계 계면활성제에 의한 n-헥산의 가용화에 미치는 영향에 관한 연구 = Effect of the addition of fluorinated surfactant on the solubilization of n-hexane by hydrocarbon surfactant 신희동, 박기호, 임종주 p. 397-403
바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구 = Operation characteristics of a plasma reformer for biogas direct reforming 이병진, 위수빈, 이동규, 황상연, 송형운 p. 404-411
Red mud/fly ash 기반 geopolymer 흡착제의 소성온도에 따른 특성 및 흡착거동 = Characterization and adsorption properties of red mud/fly ash based geopolymers adsorbent with calcination temperature 신진영, 김한성, 강화영, 윤순도 p. 412-420
밀폐된 구획 내 일부 플라스틱류의 연기 특성 평가 = Evaluation of the smoke characteristics of some plastics in an enclosed compartment 유지선, 강경신, 이재승, 정영진 p. 421-425
오일 추출에 의해 물성이 향상된 커피 찌꺼기 활성탄소기반 슈퍼커패시터 제조 및 그 전기화학적 특성 = Preparation of coffee grounds activated carbon-based supercapacitors with enhanced properties by oil extraction and their electrochemical properties 김경수, 민충기, 이영석 p. 426-433
저온 성능이 향상된 Calcium Sulfonate 그리스의 합성 및 트라이볼로지 특성 연구 = A study on the synthesis and tribological characteristics of calcium sulfonate grease with improved low-temperature performance 김광태, 박현호, 이창섭 p. 434-443
광개시제 종류 및 함량에 따른 광경화형 잉크의 광경화 특성과 인쇄회로기판용 에칭 레지스트 소재로의 적용성 연구 = Investigating the effect of photoinitiator types and contents on the photocuring behavior of photocurable inks and their applications for etching resist inks 김보영, 조수빈, 정과정, 박성대, 김지훈, 최의근, 유명재, 양현승 p. 444-449
마그네슘-알루미늄(Mg-Al) 합금 분말의 염소이온 정량법의 비교에 관한 연구 = A study on the comparison of chloride ion quantification methods for magnesium-aluminum (Mg-Al) alloy powder 김윤환, 최영선 p. 450-454
Response optimization for the preparation of MIL-100(Fe)@COF materials using design of experiments Min Hyung Lee, Sangmin Lee, Kye Sang Yoo p. 455-459

참고문헌 (70건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 WMO, P. Taalas, 2021 State of climate serivces: Water, 2021. 미소장
2 A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, Advances in seawater desalination technologies, Desalination, 221, 47-69 (2008). 미소장
3 K. Elsaid, M. Kamil, E. T. Sayed, M. A. Abdelkareem, T. Wilberforce, and A. Olabi, Environmental impact of desalination technologies: A review, Sci. Total Environ., 748, 141528 (2020). 미소장
4 Future Strategy Division, Ministry of Economy and Finance, “2050Carbon Neutrality” Promotion Strategy, Korea Policy Briefing (2020). 미소장
5 S. Fankhauser, S. M. Smith, M. Allen, K. Axelsson, T. Hale, C. Hepburn, J. M. Kendall, R. Khosla, J. Lezaun, E. Mitchell-Larson, M. Obersteiner, L. Rajamani, R. Rickaby, N. Seddon, and T. Wetzer, The meaning of net zero and how to get it right, Nat. Clim. Chang., 12, 15-21 (2022). 미소장
6 H. Joo and J. Yoon, Basic concept of carbon neutral engineering in the chemical industry to overcome the climate crisis, Korean Ind. Chem. News, 25, 34-39 (2022). 미소장
7 M. A. Alkhadra, X. Su, M. E. Suss, H. Tian, E. N. Guyes, A. N. Shocron, K. M. Conforti, J. P. de Souza, N. Kim, M. Tedesco, K. Khoiruddin, I. G. Wenten, J. G. Santiago, T. A. Hatton, and M. Z. Bazant, Electrochemical methods for water purification, ion separations, and energy conversion, Chem. Rev., 122, 13547-13635(2022). 미소장
8 H. Yoon, J. Lee, S. Kim, and J. Yoon, Review of concepts and applications of electrochemical ion separation (EIONS) process, Sep. Purif. Technol., 215, 190-207 (2019). 미소장
9 J. W. Blair and G. W. Murphy, Electrochemical demineralization of water with porous electrodes of large surface area, In: Saline Water Conversion, 206-223, American Chemical Society, Washington, D.C., United States of America (1960). 미소장
10 Y. Oren, Capacitive deionization (CDI) for desalination and water treatment - Past, present and future (a review), Desalination, 228, 10-29 (2008). 미소장
11 K. Singh, S. Porada, H. D. de Gier, P. M. Biesheuvel, L. C. P. M. de Smet, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115-134 (2019). 미소장
12 K. C. Smith, R. Dmello, Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-Intercalation: PorousElectrode Modeling, J. Electrochem. Soc., 163, A530-A539 (2016). 미소장
13 J. G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M. E. Suss, P. Liang, P. M. Biesheuvel, R. L. Zornitta, and L. C. P. M. de Smet, Recent advances in ion selectivity with capacitive deionization, Energy Environ. Sci., 14, 1095-1120 (2021). 미소장
14 J. H. Yeo and J. H. Choi, Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode, Desalination, 320, 10-16 (2013). 미소장
15 T. Pang and J. Shen, Visualizing the landscape and evolution of capacitive deionization by scientometric analysis, Desalination, 527, 115562 (2022). 미소장
16 S. A. Hawks, A. Ramachandran, S. Porada, P. G. Campbell, M. E. Suss, P. M. Biesheuvel, J. G. Santiago, and M. Stadermann, Performance metrics for the objective assessment of capacitive deionization systems, Water Res., 152, 126-137 (2019). 미소장
17 S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010). 미소장
18 J. G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M. E. Suss, P. Liang, P. M. Biesheuvel, R. L. Zornitta, and L. C. P. M. De Smet, Recent advances in ion selectivity with capacitive deionization, Energy Environ. Sci., 14, 1095-1120 (2021). 미소장
19 M. Pasta, C. D. Wessells, Y. Cui, and F. la Mantia, A desalination battery, Nano Lett., 12, 839-843 (2012). 미소장
20 P. Srimuk, X. Su, J. Yoon, D. Aurbach, and V. Presser, Chargetransfer materials for electrochemical water desalination, ion separation and the recovery of elements, Nat. Rev. Mater., 5, 517-538(2020). 미소장
21 H. Kim, J. Hong, K. Y. Park, H. Kim, S. W. Kim, and K. Kang, Aqueous rechargeable Li and Na ion batteries, Chem. Rev., 114, 11788-11827 (2014). 미소장
22 T. Kim and J. Yoon, CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization, RSC Adv., 5, 1456-1461 (2015). 미소장
23 N. Kim, J. Lee, S. Kim, S. P. Hong, C. Lee, J. Yoon, and C. Kim, Short review of multichannel membrane capacitive deionization:Principle, current status, and future prospect, Appl. Sci. (Switzerland), 10, 683 (2020). 미소장
24 S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010). 미소장
25 J. H. Choi, Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process, Sep. Purif. Technol., 70, 362-366 (2010). 미소장
26 Z. H. Huang, M. Wang, L. Wang, and F. Kang, Relation between the charge efficiency of activated carbon fiber and its desalination performance, Langmuir, 28, 5079-5084 (2012). 미소장
27 M. W. Ryoo, J. H. Kim, and G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, J. Colloid Interface Sci., 264, 414-419 (2003). 미소장
28 Z. Peng, D. Zhang, L. Shi, T. Yan, High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization, J. Mater. Chem., 22, 6603-6612 (2012). 미소장
29 Z. Li, B. Song, Z. Wu, Z. Lin, Y. Yao, K. S. Moon, C. P. Wong, 3D porous graphene with ultrahigh surface area for microscale capacitive deionization, Nano Energy., 11, 711-718 (2015). 미소장
30 S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013). 미소장
31 J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196, 125-134 (2006). 미소장
32 R. Zhao, S. Porada, and P. M. Biesheuvel, A. Van der Wal, Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 330, 35-41 (2013). 미소장
33 Y. J. Kim and J. H. Choi, (2010). Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol., 71, 70-75. 미소장
34 Lee, J. H., & Choi, J. H. (2012). The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 409, 251-256. 미소장
35 Kim, Y. J., Kim, J. H., & Choi, J. H. (2013). Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI), J. Membr. Sci., 429, 52-57. 미소장
36 M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, Water desalination via capacitive deionization: What is it and what can we expect from it?, Energy Environ. Sci., 8, 2296-2319 (2015). 미소장
37 J. Yu, K. Jo, T. Kim, J. Lee, and J. Yoon, Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization, Desalination, 439, 188-195 (2018). 미소장
38 J. Lee, S. Kim, C. Kim, and J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques, Energy Environ. Sci., 7, 3683-3689 (2014). 미소장
39 J. Lee, K. Jo, J. Lee, S. P. Hong, S. Kim, and J. Yoon, Rocking-chair capacitive deionization for continuous brackish water desalination, ACS Sustain. Chem. Eng., 6, 10815-10822 (2018). 미소장
40 S. il Jeon, H. R. Park, J. G. Yeo, S. Yang, C. H. Cho, M. H. Han, and D. K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6, 1471-1475 (2013). 미소장
41 C. Kim, P. Srimuk, J. Lee, M. Aslan, and V. Presser, Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes, Desalination, 425, 104-110 (2018). 미소장
42 P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin?, Science, 343, 1210-1211 (2014). 미소장
43 K. Singh, S. Porada, H. D. de Gier, P. M. Biesheuvel, and L. C. P. M. de Smet, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115-134 (2019). 미소장
44 M. Pasta, C. D. Wessells, Y. Cui, and F. La Mantia, A desalination battery, Nano Lett., 12, 839-843 (2012). 미소장
45 H. Kim, J. Hong, K. Y. Park, H. Kim, S. W. Kim, and K. Kang, Aqueous rechargeable Li and Na ion batteries, Chem., Rev., 114, 11788-11827 (2014). 미소장
46 F. Sauvage, L. Laffont, J. M. Tarascon, and E. Baudrin, Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2, Inorg. Chem., 46, 3289-3294 (2007). 미소장
47 A. A. Karyakin, Prussian blue and its analogues: Electrochemistry and analytical applications, Electroanalysis, 13, 813-819 (2001). 미소장
48 K. C. Smith and R. Dmello, Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric na-intercalation: porouselectrode modeling, J. Electrochem. Soc., 163, A530-A539 (2016). 미소장
49 K. Singh, H. J. M. Bouwmeester, L. C. P. M. de Smet, M. Z. Bazant, and P. M. Biesheuvel, Theory of water desalination with intercalation materials, Phys. Rev. Appl., 9, 064036 (2018). 미소장
50 J. Lee, S. Kim, and J. Yoon, Rocking chair desalination battery based on prussian blue electrodes, ACS Omega, 2, 1653-1659(2017). 미소장
51 T. Kim, C. A. Gorski, and B. E. Logan, Low energy desalination using battery electrode deionization, Environ. Sci. Technol. Lett., 4, 444-449 (2017). 미소장
52 J. Ahn, J. Lee, S. Kim, C. Kim, J. Lee, P. M. Biesheuvel, and J. Yoon, High performance electrochemical saline water desalination using silver and silver-chloride electrodes, Desalination, 476, 114216 (2020). 미소장
53 H. Joo, J. Lee, and J. Yoon, Short review: Timeline of the electrochemical lithium recovery system using the spinel LiMn2O4 as a positive electrode, Energies (Basel), 13, 6235 (2020). 미소장
54 S. Kim, H. Joo, T. Moon, S. H. Kim, and J. Yoon, Rapid and selective lithium recovery from desalination brine using an electrochemical system, Environ. Sci. Process. Impacts, 21, 667-676(2019). 미소장
55 E. J. Calvo, Direct lithium recovery from aqueous electrolytes with electrochemical ion pumping and lithium intercalation, ACS Omega, 6, 35213-35220 (2021). 미소장
56 G. Luo, X. Li, L. Chen, Y. Chao, and W. Zhu, Electrochemical lithium ion pumps for lithium recovery: A systematic review and influencing factors analysis, Desalination, 548, 116228 (2023). 미소장
57 S. K. Patel, M. Qin, W. S. Walker, and M. Elimelech, Energy efficiency of electro-driven brackish water desalination: Electrodialysis significantly outperforms membrane capacitive deionization, Environ. Sci. Technol., 54, 3663-3677 (2020). 미소장
58 S. Y. Pan, A. Z. Haddad, A. Kumar, and S. W. Wang, Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus, Water Res., 183, 116064 (2020). 미소장
59 S. il Jeon, N. Kim, K. Jo, J. Ahn, H. Joo, C. Lee, C. Kim, and J. Yoon, Improvement in the desalination performance of membrane capacitive deionization with a bipolar electrode via an energy recovery process, Chem. Eng. J., 439, 135603 (2022). 미소장
60 Y. M. Volfkovich, Capacitive deionization of water (a review), Russ. J. Electrochem., 56, 18-51 (2020). 미소장
61 C. Zhang, D. He, J. Ma, W. Tang, and T. D. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review, Water Res., 128, 314-330 (2018). 미소장
62 A. N. Shocron, R. S. Roth, E. N. Guyes, R. Epsztein, and M. E. Suss, Comparison of ion selectivity in electrodialysis and capacitive deionization, Environ. Sci. Technol. Lett., 9, 889-899 (2022). 미소장
63 A. Thamilselvan, A. S. Nesaraj, and M. Noel, Review on carbon-based electrode materials for application in capacitive deionization process, Int. J. Environ. Sci. Technol. (Tehran), 13, 2961-2976 (2016). 미소장
64 H. Joo, S. Kim, S. Kim, M. Choi, S. H. Kim, and J. Yoon, Pilot-scale demonstration of an electrochemical system for lithium recovery from the desalination concentrate, Environ. Sci.: Water Res. Technol., 6, 290-295 (2020). 미소장
65 H. Yoon, T. Min, J. Lee, G. Lee, M. Jeon, and A. Kim, Lithium-selective hybrid capacitive deionization system with a Ag-coated carbon electrode and stop-flow operation, Environ. Sci.:Water Res. Technol., 9, 500-507 (2023). 미소장
66 A. Kumar, G. Naidu, H. Fukuda, F. Du, S. Vigneswaran, E. Drioli, and J. H. Lienhard, Metals recovery from seawater desalination brines: Technologies, opportunities, and challenges, ACS Sustain. Chem. Eng., 9, 7704-7712 (2021). 미소장
67 S. Kim, J. Kim, S. Kim, J. Lee, and J. Yoon, Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant, Environ. Sci.: Water Res. Technol., 4, 175- 182 (2018). 미소장
68 J. Kang, T. Kim, H. Shin, J. Lee, J. I. Ha, and J. Yoon, Direct energy recovery system for membrane capacitive deionization, Desalination, 398, 144-150 (2016). 미소장
69 J. Ahn, S. Kim, S. il Jeon, C. Lee, J. Lee, and J. Yoon, Nafioncoated Prussian blue electrodes to enhance the stability and effi- ciency of battery desalination system, Desalination, 500, 114778(2021). 미소장
70 L. Wang, Y. Zhang, K. Moh, and V. Presser, From capacitive deionization to desalination batteries and desalination fuel cells, Curr. Opin. Electrochem., 29, 100758 (2021). 미소장