권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
매년 증가하는 온라인 상거래 시장과, 점차 다양해지는 상품과 콘텐츠로 인해 사용자들은 선택 과정에 어려움을 느낀다. 이에 여러 기업들은 온라인 쇼핑몰에서 사용자가 선호할 상품을 선별하여 제공하기 위해 추천 시스템에 대한 지속적인 연구를 진행하고 있다. 대다수의 추천 시스템연구에서는 비교적 획득하기 쉬운 사용자의 이벤트 데이터를 기반하여 연구를 진행하였으나 한 종류의 사용자 행동만을 고려하기 때문에 사용자의 선호도를 파악하는 것에 오차가 발생한다. 이에 본 논문에서는 여러 종류의 사용자 행동 데이터의 상관관계를 고려하여 사용자의 선호도를 분석하는 추천 시스템을 제안한다. 제안하는 추천 시스템은 사용자의 사용자 행동 데이터의 상관관계를 분석하고 가중치를 생성하여 추천 모델을 학습한다.
실험에서는 기존 연구의 알고리즘과의 성능 비교를 통해 제안하는 시스템의 복잡도와 성능 향상을 확인하였다.
As the online commerce market continues to expand with an increase of diverse products and content, users find it challenging in navigating and in the selection process. Thereafter both platforms and shopping malls are actively working in conducting continuous research on recommendations system to select and present products that align with user preferences. Most existing recommendation studies have relied on user data which is relatively easy to obtain. However, these studies only use a single type of event and their reliance on time dependent data results in issues with reliability and complexity. To address these challenges, this paper proposes a recommendation system that analysis user preferences in consideration of the relationship between various types of event data. The proposed recommendation system analyzes the correlation of multiple events, extracts weights, learns the recommendation model, and provides recommendation services through it. Through extensive experiments the performance of our system was compared with the previously studied algorithms. The results confirmed an improvement in both complexity and performance.기사명 | 저자명 | 페이지 | 원문 | 목차 |
---|---|---|---|---|
가우시안 프로세서 회귀 기반의 비선형 구조방정식을 활용한 고분자 물성거동 예측 연구 = Study of polymor properties prediction using nonlinear SEM based on Gaussian process regression | 문경렬, 박건욱 | p. 1-9 |
|
|
온라인 쇼핑몰 환경에서 사용자 행동 데이터의 상관관계 분석 기반 추천 시스템 = Recommendation system based on correlation analysis of user behavior data in online shopping mall environment | 박요한, 문종혁, 최종선, 최재영 | p. 10-20 |
|
|
실내환경에서의 자율주행차 무선 전력 전송을 위한 딥러닝 기반 UWB 거리 측정 = Deep learning-based UWB distance measurement for wireless power transfer of autonomous vehicles in indoor environment | 김혜정, 박용주, 한승재 | p. 21-30 |
|
|
다중-요소 비밀 공유를 위한 지분 강화 기법 = A share hardening method for multi-factor secret sharing | 정성욱, 유민수 | p. 31-37 |
|
*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.