권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
CT 촬영 시 방사선량을 줄이면 피폭 위험성을 낮출 수 있으나, 영상 해상도가 크게 저하 될 뿐 아니라 잡음(noise) 발생으로 인해 진단의 효용성이 떨어진다. 따라서, CT 영상에서의 잡음제거는 영상복원 분야에 있어 매우 중요하고 필수적인 처리 과정이다. 영상 영역에서 잡음과 원래 신호를 분리하여 잡음만을 제거하는 것은 한계가 있다. 본 논문에서는 웨이블릿 변환 기반 GAN 모델 즉, WT-GAN(wavelet transform-based GAN) 모델을 이용하여 CT 영상에서 효과적으로 잡음 제거하고자 한다. 여기서 사용된 GAN 모델은 U-Net 구조의 생성자와 PatchGAN 구조의 판별자를 통해 잡음제거 영상을 생성한다. 본 논문에서 제안된 WT-GAN 모델의 성능 평가를 위해 다양한 잡음, 즉, 가우시안 잡음(Gaussian noise), 포아송 잡음 (Poisson noise) 그리고 스펙클 잡음 (speckle noise)에 의해 훼손된 CT 영상을 대상으로 실험하였다. 성능 실험 결과, WT-GAN 모델은 전통적인 필터 즉, BM3D 필터뿐만 아니라 기존의 딥러닝 모델인 DnCNN, CDAE 모형 그리고 U-Net GAN 모형보다 정성적이고, 정량적인 척도 즉, PSNR (Peak Signal-to-Noise Ratio) 그리고 SSIM (Structural Similarity Index Measure) 면에서 우수한 결과를 보였다.
Reducing the radiation dose during CT scanning can lower the risk of radiation exposure, but not only does the image resolution significantly deteriorate, but the effectiveness of diagnosis is reduced due to the generation of noise. Therefore, noise removal from CT images is a very important and essential processing process in the image restoration. Until now, there are limitations in removing only the noise by separating the noise and the original signal in the image area. In this paper, we aim to effectively remove noise from CT images using the wavelet transform-based GAN model, that is, the WT-GAN model in the frequency domain. The GAN model used here generates images with noise removed through a U-Net structured generator and a PatchGAN structured discriminator. To evaluate the performance of the WT-GAN model proposed in this paper, experiments were conducted on CT images damaged by various noises, namely Gaussian noise, Poisson noise, and speckle noise. As a result of the performance experiment, the WT-GAN model is better than the traditional filter, that is, the BM3D filter, as well as the existing deep learning models, such as DnCNN, CDAE model, and U-Net GAN model, in qualitative and quantitative measures, that is, PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Measure) showed excellent results.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.