본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

초록보기

Eukaryotic transcription, a fundamental process that governs cell-specific gene expression, has long been the subject of extensive investigations in the fields of molecular biology, biochemistry, and structural biology. Recent advances in microscopy techniques have led to a fascinating concept known as “transcriptional condensates.” These dynamic assemblies are the result of a phenomenon called liquid‒liquid phase separation, which is driven by multivalent interactions between the constituent proteins in cells. The essential proteins associated with transcription are concentrated in transcriptional condensates. Recent studies have shed light on the temporal dynamics of transcriptional condensates and their potential role in enhancing the efficiency of transcription. In this article, we explore the properties of transcriptional condensates, investigate how they evolve over time, and evaluate the significant impact they have on the process of transcription. Furthermore, we highlight innovative techniques that allow us to manipulate these condensates, thus demonstrating their responsiveness to cellular signals and their connection to transcriptional bursting. As our understanding of transcriptional condensates continues to grow, they are poised to revolutionize our understanding of eukaryotic gene regulation.

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
Experimental capture of miRNA targetomes : disease-specific 3′ UTR library-based miRNA targetomics for Parkinson’s disease Martin Hart, Fabian Kern, Claudia Fecher-Trost, Lena Krammes, Ernesto Aparicio, Annika Engel, Pascal Hirsch, Viktoria Wagner, Verena Keller, Georges Pierre Schmartz ... [et al.] p. 1-11

(The) acute phase reactant orosomucoid-2 directly promotes rheumatoid inflammation Ki-Myo Kim, Kang-Gu Lee, Saseong Lee, Bong-Ki Hong, Heejae Yun, Yune-Jung Park, Seung-Ah Yoo, Wan-Uk Kim p. 1-14

Recent advances in extracellular vesicles for therapeutic cargo delivery Hyo In Kim, Jinbong Park, Yin Zhu, Xiaoyun Wang, Yohan Han, Duo Zhang p. 1-14

Transmembrane proteins with unknown function (TMEMs) as ion channels : electrophysiological properties, structure, and pathophysiological roles Hyunji Kang, C. Justin Lee p. 1-11

Transcriptome-based deep learning analysis identifies drug candidates targeting protein synthesis and autophagy for the treatment of muscle wasting disorder Min Hak Lee, Bada Lee, Se Eun Park, Ga Eul Yang, Seungwoo Cheon, Dae Hoon Lee, Sukyeong Kang, Ye Ji Sun, Yongjin Kim, Dong-sub Jung, Wonwoo Kim, Jihoon Kang, Yi Rang Kim, Jin Woo Choi p. 1-18

Cargo specificity, regulation, and therapeutic potential of cytoplasmic dynein Jin-Gyeong Park, Hanul Jeon, Kwang Yeon Hwang, Sun-Shin Cha, Rafael T. Han, Hyesung Cho, In-Gyun Lee p. 1-9

Recent advances in CRISPR-based functional genomics for the study of disease-associated genetic variants Heon Seok Kim, Jiyeon Kweon, Yongsub Kim p. 1-9

Methyl-CpG binding domain protein 2 (Mbd2) drives breast cancer progression through the modulation of epithelial-to-mesenchymal transition Niaz Mahmood, Ani Arakelian, Moshe Szyf, Shafaat A. Rabbani p. 1-16

Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer Yu Jin Lee, Kyeong Jin Shin, Young Chan Chae p. 1-13

Central neurocytoma exhibits radial glial cell signatures with FGFR3 hypomethylation and overexpression Yeajina Lee, Tamrin Chowdhury, Sojin Kim, Hyeon Jong Yu, Kyung-Min Kim, Ho Kang, Min-Sung Kim, Jin Wook Kim, Yong-Hwy Kim, So Young Ji ... [et al.] p. 1-12

Loss of SREBP-1c ameliorates iron-induced liver fibrosis by decreasing lipocalin-2 Eun-Ho Lee, Jae-Ho Lee, Do-Young Kim, Young-Seung Lee, Yunju Jo, Tam Dao, Kyung Eun Kim, Dae-Kyu Song, Ji Hae Seo, Young-Kyo Seo ... [et al.] p. 1-12

Mechanism of phase condensation for chromosome architecture and function Jeongveen Park, Jeong-Jun Kim, Je-Kyung Ryu p. 1-11

Emerging insights into transcriptional condensates Kwangmin Ryu, Gunhee Park, Won-Ki Cho p. 1-7

Advances in the multimodal analysis of the 3D chromatin structure and gene regulation Man-Hyuk Han, Jihyun Park, Minhee Park p. 1-9

Enhancer–promoter specificity in gene transcription : molecular mechanisms and disease associations Meyer J. Friedman, Tobias Wagner, Haram Lee, Michael G. Rosenfeld, Soohwan Oh p. 1-16

Glutamine-mediated epigenetic regulation of cFLIP underlies resistance to TRAIL in pancreatic cancer Ji Hye Kim, Jinyoung Lee, Se Seul Im, Boyun Kim, Eun-Young Kim, Hyo-Jin Min, Jinbeom Heo, Eun-Ju Chang, Kyung-Chul Choi, Dong-Myung Shin, Jaekyoung Son p. 1013-1026

참고문헌 (48건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Jackson, D. A., Hassan, A. B., Errington, R. J. & Cook, P. R. Visualization of focal sites of transcription within human nuclei. EMBO J. 12, 1059–1065 (1993). 미소장
2 Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013). 미소장
3 Cho, W. K. et al. RNA Polymerase II cluster dynamics predict mRNA output in living cells. Elife 5, https://doi.org/10.7554/eLife.13617 (2016). 미소장
4 Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018). 미소장
5 Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, https://doi.org/10.1126/science.aar3958 (2018). 미소장
6 Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017). 미소장
7 Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020). 미소장
8 Hershey, A. D. & Chase, M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36, 39–56 (1952). 미소장
9 McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819 (1997). 미소장
10 Tunnacliffe, E. & Chubb, J. R. What is a transcriptional burst? Trends Genet. 36, 288–297 (2020). 미소장
11 Rodriguez, J. & Larson, D. R. Transcription in living cells: molecular mechanisms of bursting. Annu. Rev. Biochem. 89, 189–212 (2020). 미소장
12 Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8, 165–170 (2011). 미소장
13 Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009). 미소장
14 Hyman, A. A., Weber, C. A. & Julicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014). 미소장
15 Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017). 미소장
16 Hirose, T., Ninomiya, K., Nakagawa, S. & Yamazaki, T. A guide to membraneless organelles and their various roles in gene regulation. Nat. Rev. Mol. Cell Biol. 24, 288–304 (2023). 미소장
17 Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022). 미소장
18 Chen, L. et al. Hormone-induced enhancer assembly requires an optimal level of hormone receptor multivalent interactions. Mol. Cell 83, 3438–3456.e3412 (2023). 미소장
19 Wang, H. et al. The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors. Nat. Commun. 13, 5703 (2022). 미소장
20 Li, J. et al. Single-molecule nanoscopy elucidates RNA Polymerase II transcription at single genes in live cells. Cell 178, 491–506.e428 (2019). 미소장
21 Li, J. et al. Single-gene imaging links genome topology, promoter-enhancer communication and transcription control. Nat. Struct. Mol. Biol. 27, 1032–1040 (2020). 미소장
22 Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345.e328 (2023). 미소장
23 Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019). 미소장
24 Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018). 미소장
25 Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e1816 (2018). 미소장
26 Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, https://doi.org/10.1126/science.aar2555 (2018). 미소장
27 Trojanowski, J. et al. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell 82, 1878–1893.e1810 (2022). 미소장
28 Lee, R. et al. CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates. Nucleic Acids Res. 50, 207–226 (2022). 미소장
29 Barshad, G. et al. RNA polymerase II dynamics shape enhancer-promoter interactions. Nat. Genet. 55, 1370–1380 (2023). 미소장
30 Hilbert, L. et al. Author correction: transcription organizes euchromatin via microphase separation. Nat. Commun. 12, 4240 (2021). 미소장
31 Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013). 미소장
32 Ohishi, H. et al. STREAMING-tag system reveals spatiotemporal relationships between transcriptional regulatory factors and transcriptional activity. Nat. Commun. 13, 7672 (2022). 미소장
33 Cheng, L., De, C., Li, J. & Pertsinidis, A. Mechanisms of transcription control by distal enhancers from high-resolution single-gene imaging. bioRxiv, https://doi.org/10.1101/2023.03.19.533190 (2023). 미소장
34 Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225.e224 (2021). 미소장
35 Pownall, M. E. et al. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 381, 92–100 (2023). 미소장
36 Basu, S. et al. Unblending of transcriptional condensates in human repeat expansion disease. Cell 181, 1062–1079.e1030 (2020). 미소장
37 Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e114 (2017). 미소장
38 Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491.e1413 (2018). 미소장
39 Schneider, N. et al. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Sci. Adv. 7, https://doi.org/10.1126/sciadv.abd3568 (2021). 미소장
40 Wei, M. T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020). 미소장
41 Chong, S. et al. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 82, 2084–2097.e2085 (2022). 미소장
42 Zamudio, A. V. et al. Mediator condensates localize signaling factors to key cell identity genes. Mol. Cell 76, 753–766.e756 (2019). 미소장
43 Cai, D. et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578–1589 (2019). 미소장
44 Lu, Y. et al. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453–464 (2020). 미소장
45 Saravanan, B. et al. Ligand dependent gene regulation by transient ERalpha clustered enhancers. PLoS Genet. 16, e1008516 (2020). 미소장
46 Zhang, F. et al. Dynamic phase separation of the androgen receptor and its coactivators key to regulate gene expression. Nucleic Acids Res. 51, 99–116 (2023). 미소장
47 Zhang, H. et al. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat. Cell Biol. 24, 340–352 (2022). 미소장
48 Chowdhary, S., Kainth, A. S., Paracha, S., Gross, D. S. & Pincus, D. Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response. Mol. Cell 82, 4386–4399.e4387 (2022). 미소장