권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
MRI(Magnetic Resonance Imaging) 영상과 CT(Computed Tomography) 영상과 같은 의료영상에서 잡음제거는 의료영상 시스템의 성능에 중요한 영향을 미친다. 최근 영상처리 기술에 딥러닝(Deep Learning)의 도입으로 잡음제거 방법들의 성능이 향상되고 있다. 그러나 영상영역에서 디테일을 보존하면서 잡음만을 제거하는 것은 한계가 있다. 본 논문에서는 웨이블렛 변환 기반 CNN(Convolutional Neural Network) 모형, 즉 WT-DnCNN(Wavelet Transform-Denoising Convolutional Neural Network) 모형을 통해 잡음제거 성능을 높이고자 한다. 이는 잡음 영상에 웨이블렛 변환을 사용하여 주파수 대역별로 구분하여 일차적으로 잡음을 제거하고, 해당 주파수 대역에서 기존 DnCNN 모형을 적용하여 최종적으로 잡음을 제거하고자 한다. 본 논문에서 제안된 WT-DnCNN 모형의 성능평가를 위해 다양한 잡음, 즉, 가우시안 잡음(Gaussian Noise), 포아송 잡음(Poisson Noise) 그리고 스펙클 잡음(Speckle Noise)에 의해 훼손된 MRI 영상과 CT 영상을 대상으로 실험하였다. 성능 실험 결과, WT-DnCNN 모형은 정성적 비교에서 전통적인 필터 즉, BM3D(Block-Matching and 3D Filtering) 필터뿐만 아니라 기존의 딥러닝 모형인 DnCNN, CDAE(Convolution Denoising AutoEncoder) 모형보다 우수하고, 정량적 비교에서 PSNR(Peak Signal-to-Noise Ratio) 과 SSIM(Structural Similarity Index Measure) 수치는 MRI 영상에서 각각 36~43과 0.93~0.98, CT 영상에서 각각 38~43과 0.95~0.98 정도로 우수한 결과를 보였다. 또한, 모형의 실행 속도 비교에서 DnCNN 모형은 BM3D 모형보다는 훨씬 적게 결렸으나 DnCNN 모형과의 비교에서는 웨이블렛 변환 추가로 인해 오래 걸림을 알 수 있었다.
In medical images such as MRI(Magnetic Resonance Imaging) and CT(Computed Tomography) images, noise removal has a significant impact on the performance of medical imaging systems. Recently, the introduction of deep learning in image processing technology has improved the performance of noise removal methods. However, there is a limit to removing only noise while preserving details in the image domain. In this paper, we propose a wavelet transform-based CNN(Convolutional Neural Network) model, namely the WT-DnCNN(Wavelet Transform-Denoising Convolutional Neural Network) model, to improve noise removal performance. This model first removes noise by dividing the noisy image into frequency bands using wavelet transform, and then applies the existing DnCNN model to the corresponding frequency bands to finally remove noise. In order to evaluate the performance of the WT-DnCNN model proposed in this paper, experiments were conducted on MRI and CT images damaged by various noises, namely Gaussian noise, Poisson noise, and speckle noise. The performance experiment results show that the WT-DnCNN model is superior to the traditional filter, i.e., the BM3D(Block-Matching and 3D Filtering) filter, as well as the existing deep learning models, DnCNN and CDAE(Convolution Denoising AutoEncoder) model in qualitative comparison, and in quantitative comparison, the PSNR(Peak Signal-to-Noise Ratio) and SSIM(Structural Similarity Index Measure) values were 36~43 and 0.93~0.98 for MRI images and 38~43 and 0.95~0.98 for CT images, respectively. In addition, in the comparison of the execution speed of the models, the DnCNN model was much less than the BM3D model, but it took a long time due to the addition of the wavelet transform in the comparison with the DnCNN model.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.