본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
배연탈황공정에 국내산 석회석의 활용과 첨가제 개발 / 통상산업부 인기도
발행사항
[과천] : 통상산업부, 1997
청구기호
662.623 ㅌ363ㅂ
자료실
[서울관] 서고(열람신청 후 1층 대출대)
형태사항
ⅹⅹⅹⅵ, 325 p. : 도표 ; 27 cm
제어번호
MONO1199812339
주기사항
표지표제: 배연탈황공정에 국내산 석회석의 활용과 첨가제개발에 관한 최종보고서
사업수행기관명: 한국에너지기술연구소
수행책임자: 이형근
원문
미리보기

목차보기더보기

[표제지 등]

서지정보양식

BIBLIOGRAPHIC INFORMATION SHEET

제출문

요약문

Summary

Notation

표목차

그림목차

목차

제1장 서론 41

제2장 배연탈황공정의 특성 46

제1절 서론 46

제2절 공정의 개요 46

1. 공정의 특성 47

2. Conventional 석회석 FGD 공정 48

제3절 습식 FGD공정의 현황 48

1. FGD공정의 설치현황 48

2. FGD공정 Market 50

제4절 미국의 환경규제법 대응 방법 53

1. 1단계를 위한 계획 53

2. 2단계를 위한 계획 57

3. SO₂ 배출권 구입의 기준 58

제3장 최근 FGD공정의 연구동향 60

제1절 FGD 설계기술 변화 60

1. FGD 설계기술 변화 60

2. B & W의 FGD공정 개선연구 61

제2절 FGD공정의 연구 동향 68

제3절 최신 FGD공정 71

1. 미국 CCT과제 FGD공정 71

2. 미국 GE의 황산암모늄 공정 78

3. 일본 미쓰비시 중공업의 DCFS 공정 81

4. 일본 Babcock-Hitachi사의 소형화 습식 석회석 공정 84

5. 일본 IHI사의 In-Line type 배연탈황공정 86

6. 대만의 MgO-base FGD 시스템 88

제4장 석회석과 SO₂의 반응 90

제1절 서론 90

제2절 SO₂(SO2) 반응특성 고찰 90

제3절 습식석회석 공정의 특성 93

1. 화학반응식 93

2. pH의 영향 97

3. 물질전달 특성 98

제5장 국내산 석회석의 반응성 모델개발 102

제1절 서론 102

제2절 용해속도 모델 103

1. 석회석의 용해속도 103

2. 물질전달계수 104

3. 물질전달모델 107

4. 입자분포 110

5. 조성의 영향 112

6. 석회석 용해속도상수 예측 114

제3절 결과 및 고찰 120

1. 물질전달계수 120

2. 교반의 효과(Effect of Agitation) 125

3. 입자분포 125

4. 시간에 따른 용해분율 129

5. 실험에 의한 Kc의 계산 132

6. 반응속도상수 계산 134

제4절 결론 136

제6장 실험실 규모의 SO₂ 반응 측정실험 138

제1절 서론 138

제2절 실험장치 및 방법 138

1. 실험장치 138

2. 실험시료 및 시약 141

3. 실험방법 142

제3절 회분식 실험결과 145

1. SO₂의 반응 모델 145

2. Parameter kc 와 B의 결정 149

3. 입자크기에 따른 용해속도 150

4. 조성에 따른 용해속도 152

5. 입자크기분포 변화 153

제4절 연속식 실험결과 162

1. 입자크기분포에 따른 효과 162

2. 입자크기분포 변화 162

제7장 습식탈황공정에서 석회석의 특성 및 시료수집 168

제1절 서론 168

제2절 습식탈황공정에서 석회석의 영향 168

1. 석회석의 반응성 (Limestone reactivity) 169

2. 석회석의 경도(Limestone hardness) 170

제3절 국내석회석의 현황분석 173

제4절 산지별 석회석 시료수집 및 특성 177

1. 산지별 석회석의 시료수집 177

2. 석회석 분쇄 및 특성 분석 178

제5절 석회석의 분쇄도 측정 181

1. Bond Work Index(BWI) 측정법 183

2. Hardgrove Index(HGI) 측정법 189

3. EPRI의 Grindability Index(Gl) 측정법 193

제8장 석회석의 용해속도와 마그네슘 화합물의 유용성 측정 200

제1절 서론 200

제2절 국내산 석회석의 용해속도 측정 204

1. 실험장치 및 방법 204

2. 실험결과 및 고찰 205

제3절 석회석에서 마그네슘(마그네시움) 화합물의 유용성 측정 207

1. 실험장치 207

2. 실험시료준비 및 실험방법 210

3. 실험결과 및 고찰 214

제9장 Wetted-wall column 실험장치를 이용한 석회석의 반응성 측정 224

제1절 서론 224

제2절 Wetted-wall column에서 SO₂ 흡수반응 고찰 224

1. SO₂ 흡수 반응 225

제3절 실험장치 및 방법 229

1. 실험장치 229

2. 실험방법 238

제4절 실험결과 및 고찰 239

1. 실험장치의 보정 239

2. Baseline 조건에서의 실험 239

3. SO₂ 흡수실험 241

4. Wetted-wall column에서의 연속운전 실험 247

제10장 Bench 규모 실험장치 제작 및 실험 251

제1절 실험장치 및 방법 251

1. 실험장치 252

2. 실험방법 257

제2절 실험결과 및 고찰 258

1. 실험장치의 보정 258

제3절 KIER FGD 시스템의 성능실험 261

1. Baseline condition 실험 261

2. 실험변수의 영향 266

제11장 배연탈황공정에서 첨가제의 특성 271

제1절 서론 271

제2절 첨가제의 물리화학적 특성 271

1. 첨가제의 화학적 반응 메커니즘 273

2. 알칼리첨가제 및 acid buffer의 특성 274

제12장 첨가제의 영향을 고려한 석회석의 반응성 예측모델 281

제1절 서론 281

제2절 SO₂ 가스흡수에서 유기산 첨가제의 영향 281

1. 화학흡수 메카니즘 282

2. 2성분 혼합 첨가제의 사용 290

3. 3성분 혼합 첨가제의 사용 292

4. 컴퓨터 알고리즘 293

제3절 결과 및 고찰 298

1. 유기산 첨가제로 아디핀산(Adipic acid)의 첨가 298

2. 첨가제의 민감도 측정(Sensitivity of Additives) 299

3. 두가지 첨가제의 혼합 303

4. 세가지 첨가제의 혼합 303

제4절 결론 305

제13장 실험실규모에서 첨가제의 성능 측정 308

제1절 서론 308

제2절 첨가제의 선정 308

제3절 실험장치 및 방법 310

제4절 실험결과 및 고찰 311

제14장 Bench규모 실험장치에서 첨가제의 성능실험 323

제1절 실험장치 및 방법 323

제15장 종합결론 및 향후 계획 339

제1절 종합 결론 339

제2절 향후계획 및 건의 342

참고문헌 346

부록 I. 석회석의 용해속도와 마그네슘 화합물의 유용성 측정 실험 결과 355

(Table 2-1) Total FGD orders in U.S. 50

(Table 2-2) U.S. FGD scrubber sales(1989-1994) 51

(Table 2-3) Total FGD market sensitivity in U.S. 52

(Table 2-4) World wide FGD scrubber orders(1981-1993) 53

(Table 2-5) Phase I FGD Installations in the U.S. 55

(Table 2-6) Other recent FGD installations in the U.S. 56

(Table 3-1) Comparison of Chiyoda CT-121 vs. conventional FGD process 78

(Table 5-1) 물질전달 모델의 접근방법 및 관련문헌 104

(Table 5-2) Fredonia 석회석에 대한 분석자료. Gage[5-21] 110

(Table 5-3) Equilibrium reaction of limestone slurry. 119

(Table 5-4) The Range of Operating Parameters. 121

(Table 5-5) The effect of the particle size, Nagata[5-11]. 121

(Table 5-6) Optimum of Ds/Dt ratio for various agitator.(이미지참조) 124

(Table 5-7) Fredonia limestone. Toprac[5-22]. 128

(Table 5-8) Experimental data Fredonia Extra-Coarse. 134

(Table 5-9) Calculated dissolution rates of CaCO₃ at 55℃ 135

(Table 6-1) Specification of lab-scale experimental apparatus 143

(Table 6-2) Composition of ground limestone 143

(Table 6-3) Values of kc(이미지참조) and B obtained from the experimental data 151

(Table 6-4) Average particle size of crushed limestone 152

(Table 7-1) Domestic limestone production for cement industry 174

(Table 7-2) Domestic limestone production for steel industry 175

(Table 7-3) Domestic limestone production for chemical industry 176

(Table 7-4) Changes in annual production of limestone by end-use sector 178

(Table 7-5) List of samples-collected limestone mines 179

(Table 7-6) Compositions of ground limestone-samples 182

(Table 7-7) Apparatuses for BWI measurement 184

(Table 7-8) Example of BWI measurement test procedure 187

(Table 7-9) Apparatuses for BWI measurement 190

(Table 7-10) Apparatuses for EPRI GI measurement 194

(Table 7-11) Compositions of limestone-samples and grindability indices. 199

(Table 8-1) Results of testing for limestone dissolution rate 206

(Table 8-2) Ion chromatography(chromathography) specification and conditions for sample analysis. 213

(Table 8-3) Data reduction form of dissolution rate determination of LBC1 218

(Table 8-4) Results of solid residue analysis 219

(Table 9-1) Experimental conditions of simulated gas in the wetted-wall column. 235

(Table 9-2) Specification of gas analyzer used in this experiment 238

(Table 9-3) Baseline conditions in Wetted-wall column experiments(expreiments) 241

(Table 9-4) Experimental results of domestic limestones from Wetted-wall column system 246

(Table 10-1) Specification of gas analyzer used in this experiment 256

(Table 10-2) Specification of analog input module in the PLC 260

(Table 10-3) Specification of analog output module in the PLC 261

(Table 10-4) Specification of digital output module in the PLC 262

(Table 10-5) Baseline conditions at this KIER FGD system 264

(Table 11-1) Diffusivity and pKa values for selected additives 273

(Table 11-2) Comparison of effectiveness and costs of 11 potential organic acid additives 278

(Table 11-3) Typical composition of DBA tested at the IERL-RTP pilot plant(weight %) 280

(Table 12-1) 각 각의 성분에 따른 평형상수식의 계수값 284

(Table 12-2) Debye-Huckel equation에 의한 각 성분의 계수값 285

(Table 12-3) 추측, 가정에 사용된 기본적인 Property 291

(Table 12-4) Enhancement Factor change by adding Adipic acid 298

(Table 12-5) Enhancement Factor change by diffusivity increase 300

(Table 12-6) Enhancement Factor change by equilibrium constant increase 302

(Table 12-7) Enhancement Factor change by adding two acid 304

(Table 12-8) Enhancement Factor change by adding three acid 305

(Table 12-9) Enhancement Factor change by diffusivity increase at 1.3 × 10-²(이미지참조) (mM) adipic acid 306

(Table 12-10) Enhancement Factor change by equilibrium constant increase at 1.3×10-²(이미지참조) (mM) adipic acid 306

(Table 13-1) Composition of DBA obtained from K company 309

(Table 13-2) Experimental conditions for testing the effects of additives using the Wetted-wall column system 311

(Table 13-3) Results of additive(DBA) effect testing on KIER Wetted-wall column 313

(Table 13-4) Results of additive(adipic, succinic acid) effect testing on KIER Wetted-wall column 316

(Table 13-5) Results of additive(Glutaric acid, combined additive) effect testing on KIER Wetted-wall column 319

(Table 14-1) Experimental conditions for testing the effects of DBA additives 324

(Table 14-2) Results of DBA effect testing on KIER bench scale FGD system at 2,500pm SO₂ concentration 325

(Table 14-3) Results of DBA effect testing on KIER bench scale FGD at 2,500pm SO₂ concentration 326

[Figure 2-1] Conventional flue gas desulfurization process. 49

[Figure 2-2] Estimation tools for estimating utility demand for SO₂ allowance. 58

[Figure 3-1] Wet FGD scrubber comparison between baseline and compact scrubber. 62

[Figure 3-2] Wet FGD scrubber two-phase fluid mechanics. 64

[Figure 3-3] AFGD process flow diagram. 73

[Figure 3-4] Chiyoda CT-121 process flow diagram. 76

[Figure 3-5] GE's ammonium sulfate with forced oxidation(ASFO) process. 79

[Figure 3-6] MHI's double contact flow scrubber(DCFS) process. 82

[Figure 3-7] MHI's simplified DCFS outline. 84

[Figure 3-8] Babcock-Hitachi's 200MW compact type FGD. 85

[Figure 3-9] IHI in-line type flue gas desulfurization system. 87

[Figure 3-10] Taiwan's MgO-base FGD system. 89

[Figure 4-1] Summary of important mass transfer steps and chemical reactions in lime/limestone FGD systems. 95

[Figure 5-1] Parameter Effect(α, β, d100) of the Log-Gamma distribution model. 111

[Figure 5-2] Relative Rates of H₂SO₃Reaction versus % MgO. Ellis[5-5]. 113

[Figure 5-3] Diffusion across a thin film. 115

[Figure 5-4] Particle Size Effect to Mass Transfer Coefficient. 122

[Figure 5-5] Rotational Speed Effect to Mass Transfer Coefficient. 123

[Figure 5-6] Temperature Effect to Mass Transfer Coefficient. 124

[Figure 5-7] Diameter of Agitator Effect to Mass Transfer Coefficient. 125

[Figure 5-8] Vessel Diameter Effect to Mass Transfer Coefficient. 126

[Figure 5-9] The Effect of Agitation. 127

[Figure 5-10] Particle Size Reduction. 129

[Figure 5-11] Particle Size Distribution. 130

[Figure 5-12] Fraction of Dissolution. 131

[Figure 5-13] The Effect of MgO contents. 132

[Figure 5-14] Insolubles effect to dissolution rate. 133

[Figure 5-15] Kc estimation with experimental data. 134

[Figure 5-16] Dissolution rate constants vs. pH. 135

[Figure 6-1] Schematic diagram of batch type experimental apparatus. 139

[Figure 6-2] Schematic diagram of continuous type experimental apparatus. 140

[Figure 6-3] Picture of Lab-scale system. 141

[Figure 6-4] Procedure of limestone grinding. 142

[Figure 6-5] Variation of calcium ion concentration in continuous type reactor. 145

[Figure 6-6] Effect of particle size on cumulative dissolution fraction (Danyang A). 154

[Figure 6-7] Effect of particle size on cumulative dissolution fraction (Danyang B). 154

[Figure 6-8] Effect of particle size on cumulative dissolution fraction (Hyundai A). 155

[Figure 6-9] Effect of particle size on cumulative dissolution fraction (Hyundai B). 155

[Figure 6-10] Effect of particle size on cumulative dissolution fraction(Hyundai C). 156

[Figure 6-11] Effect of composition on cumulative dissolution fraction (325 mesh passing). 156

[Figure 6-12] Effect of composition on cumulative dissolution fraction (200 mesh passing). 157

[Figure 6-13] Effect of composition on cumulative dissolution fraction (100 mesh passing). 157

[Figure 6-14] Particle size distribution of unreacted limestone in batch type test(Danyang B 325 mesh passing). 159

[Figure 6-15] Particle size distribution of unreacted limestone in batch type test(Danyang B 200 mesh passing). 159

[Figure 6-16] Particle size distribution of unreacted limestone in batch type test(Danyang B 100 mesh passing). 160

[Figure 6-17] Particle size distribution of unreacted limestone in batch type test(Danyang A 325 mesh passing). 160

[Figure 6-18] Particle size distribution of unreacted limestone in batch type test(Hyundai A 325 mesh passing). 161

[Figure 6-19] Particle size distribution of unreacted limestone in batch type test(Hyundai B 325 mesh passing). 161

[Figure 6-20] Effect of particle size on limestone slurry consumption rate(Danyang B). 163

[Figure 6-21] Effect of particle size on에서는 실험 limestone slurry consumption rate(Danyang A). 163

[Figure 6-22] Effect of particle size on limestone slurry consumption rate(Hyundai A). 164

[Figure 6-23] Effect of particle size on limestone slurry consumption rate(Hyundai C). 164

[Figure 6-24] Particle size distribution of unreacted limestone in continuous type test(Danyang B 325 mesh passing) 165

[Figure 6-25] Particle size distribution of unreacted limestone in continuous type test(Danyang B 200 mesh passing) 165

[Figure 6-26] Particle size distribution of unreacted limestone in continuous type test(Danyang A 325 mesh passing) 166

[Figure 6-27] Particle size distribution of unreacted limestone in continuous type test(Hyundai C 325 mesh passing) 166

[Figure 7-1] Flow diagram of limestone grinding system. 171

[Figure 7-2] Effect of limestone grind on scrubber performance. 172

[Figure 7-3] Procedure of limestone grinding. 181

[Figure 7-4] Drawing of Mill for BWI test 185

[Figure 7-5] Drawing of Hardgrove grindability machine 192

[Figure 7-6] Example plot of mill revolution vs. percent limestone passing 325 mesh 197

[Figure 8-1] Liquid-phase and solid-phase alkalinity vs. dissolved calcium concentration. 202

[Figure 8-2] Effects of limestone composition on limestone dissolution rate((a) : CaO,(b) : MgO) 208

[Figure 8-3] Effects of limestone composition on limestone dissolution rate((a) : CaO+MgO, (b) : Impurity) 209

[Figure 8-4] Schematic diagram of experimental apparatus for dissolution rate measurement 211

[Figure 8-5] Acid solution supply and pH profile depend on time for LBC1 216

[Figure 8-6] Acid solution supply and pH profile depend on time for LBC2 216

[Figure 8-7] Acid solution supply and pH profile depend on time for LBC4 220

[Figure 8-8] Acid solution supply and pH profile depend on time for LBC25 220

[Figure 8-9] Effects of limestone species on CaCO₃ dissolution rate 221

[Figure 8-10] Effects of limestone species on CaCO₃ dissolution rate 221

[Figure 8-11] Effects of limestone species on MgCO₃ dissolution rate 222

[Figure 8-12] Effects of limestone species on MgCO₃ dissolution rate 223

[Figure 9-1] Schematic diagram of wetted-wall column system 230

[Figure 9-2] Photograph of wetted-wall column system(column parts) 231

[Figure 9-3] Photograph of wetted-wall column system(reaction tank & control parts) 232

[Figure 9-4] Cross-sectional view of wetted wall column 233

[Figure 9-5] Cross-sectional view of the top column 233

[Figure 9-6] Detailed view of slurry inlet zone 234

[Figure 9-7] Cross-sectional view of one column 234

[Figure 9-8] Detailed view of coupling zone 234

[Figure 9-9] Cross-sectional view of the lowest column 234

[Figure 9-10] Detailed design of the gas & slurry outlet zone 236

[Figure 9-11] Detailed structure of EHT 236

[Figure 9-12] Calibration curve for slurry pump control speed and slurry flow rate. 240

[Figure 9-13] Changes of gas concentrations and hot gas temperature for wetted-wall column test in the baseline condition. 242

[Figure 9-14] Changes of measuring factors for wetted-wall column test in the baseline condition. 243

[Figure 9-15] Changes of Absorbed SO₂ in SO₂-water system 244

[Figure 9-16] Changes of Enhancement factor in SO₂-water system 244

[Figure 9-17] Comparison of Enhancement factor between SO₂-Water and SO₂-Ca(OH)₂system 245

[Figure 9-18] Rate constants and Enhancement factors depend on limestones 246

[Figure 9-19] Reproducibility for (CaCO₃/SO₂)mole and SO₂ removal efficiency for Hyundai C in L/G 14, pH 5.8 and 50 ℃ 247

[Figure 9-20] SO₂ removal efficiency versus slurry flow rate for Hyundai C in pH 5.8 and 50 ℃ 248

[Figure 9-21] (CaCO₃/SO₂)mole versus slurry flow rate as a function of limestone composition in pH 5.8 and 50 ℃ 249

[Figure 9-22] SO₂ removal efficiency versus slurry flow rate as a function of limestone composition in pH 5.8 and 50 ℃ 250

[Figure 10-1] Flow diagram of KIER's bench scale FGD system. 253

[Figure 10-2] Picture of KIER bench FGD system. 254

[Figure 10-3] Picture of process control and analyzing unit(uint) of KIER. 258

[Figure 10-4] Flow diagram of simulated flue gas. 259

[Figure 10-5] Calibration curve for flow meter of flue gas 262

[Figure 10-6] Calibration curve for SDM flow rate vs. measured flow rate. 263

[Figure 10-7] Calibration curve for SDM slurry density vs. measured slurry concentration. 263

[Figure 10-8] Temperature and gas concentration profile in the baseline condition. 265

[Figure 10-9] Gas concentration and SO₂ removal efficiency in the baseline condition. 265

[Figure 10-10] Effect of L/G ratio on SO₂ removal efficiency. 267

[Figure 10-11] Effect of pH on SO₂ removal efficiency. 268

[Figure 10-12] Effect of inlet SO₂ concentration on SO₂ pickup. 268

[Figure 10-13] Effect of pH on CaCO₃ consumption rate 270

[Figure 12-1] Mass transfer enhancement by adipic acid, 25℃, 0.5M, NaCl, pH 4 to 6 299

[Figure 12-2] Effect of diffusivity increase on enhancement factor, 25℃, 0.5M NaCl, pH 4 to 6 300

[Figure 12-3] Effect of equilibrium constant increase on enhancement factor, 25℃, 0.5M NaCl, pH 4 to 6 301

[Figure 12-4] Effect of equilibrium constant decrease on enhancement factor, 25℃, 0.5M NaCl, pH 4 to 6 301

[Figure 12-5] Effect of activity coefficient increase on enhancement factor(25℃, 0.5M NaCl, pH 4 to 6) 302

[Figure 12-6] Mass transfer enhancement by adipic acid and succinic acid(25℃, 0.5M NaCl, pH 4 to 6) 303

[Figure 12-7] Mass transfer enhancement by 3 organic acid(ac) additives(25℃, 0.5M NaCl, pH 4 to 6) 304

[Figure 13-1] Effect of pH and L/G ratio on SO₂ removal at no additive [ (a) : Inlet SO₂ conc. : 2,500ppm, (b) : Inlet SO₂ conc. : 3,500ppm]. 314

[Figure 13-2] Effect of additives on SO₂ removal [(a) : DBA, (b) : Adipic acid]. 315

[Figure 13-3] Effect of additives on SO₂ removal [(a) : Succinic acid, (b) : Glutaric acid]. 317

[Figure 13-4] Effect of combined additive(a), and comparison of additives effect on SO₂ removal(b). 320

[Figure 13-5] Effect of additives on SO₂ removal at pH 4.0. 321

[Figure 13-6] Effect of additives on SO₂ removal at pH 5.0. 322

[Figure 14-1] Effect of pH and L/G ratio on SO₂ removal at 0 ppm DBA[(a) : Inlet SO₂ conc. : 2,500ppm, (b) : Inlet SO₂ conc. : 3,500ppm] 327

[Figure 14-2] Effect of pH and L/G ratio on NTU at 0 ppm DBA((a) : Inlet SO₂ conc. : 2,500ppm, (b) : Inlet SO₂ conc. : 3,500ppm) 329

[Figure 14-3] Effect of L/G ratio and DBA concentration on NTU at 2,500ppm SO₂ concentration ((a) : pH= 4.0, (b) : pH=4.5) 330

[Figure 14-4] Effect of L/G ratio and DBA concentration on NTU at 2,500ppm SO₂ concentration((a) : pH= 5.0, (b) : pH=5.3) 332

[Figure 14-5] Contour plots for effect of DBA concentration on SO₂ removal efficiency at 2,500ppm SO₂ concentration 333

[Figure 14-6] Effect of L/G ratio and DBA concentration on NTU at 3,500ppm SO₂ concentration((a) : pH= 4.0, (b) : pH=4.5) 334

[Figure 14-7] Effect of L/G ratio and DBA concentration on NTU at 3,500ppm SO₂ concentration((a) : pH= 5.0, (b) : pH=5.2) 335

[Figure 14-8] Contour plots for effect of DBA concentration on SO₂ removal efficiency at 3,500ppm SO₂ concentration. 336

[Figure 14-9] Comparison(Comparision) of measured and predicted SO₂ removal at different SO₂ concentration. 338

이용현황보기

이용현황 테이블로 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
0000759059 662.623 ㅌ363ㅂ [서울관] 서고(열람신청 후 1층 대출대) 이용가능
0000759060 662.623 ㅌ363ㅂ [서울관] 서고(열람신청 후 1층 대출대) 이용가능

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기