본문바로가기

자료 카테고리

전체 1
도서자료 1
학위논문 0
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (1)
일반도서 (1)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
자료명/저자사항
이산화탄소로부터 청정연료 제조를 위한 혼성촉매의 개발에 관한 연구 / 통상산업부 인기도
발행사항
[과천] : 통상산업부, 1997
청구기호
665.89 ㅌ363ㅇ
자료실
[서울관] 서고(열람신청 후 1층 대출대)
형태사항
229 p. : 도표 ; 27 cm
제어번호
MONO1199812369
주기사항
표지표제: 이산화탄소로부터 청정연료 제조를 위한 혼성촉매의 개발에 관한 최종보고서
사업주관기관명: 한국과학기술원
수행책임자: 임선기
원문
미리보기

목차보기더보기

[표제지 등]

제출문

요약문

Summary

List of Figure

List of Table

목차

제1장 서론 29

제2장 문헌연구 31

제1절 메탄올 합성 31

1. 메탄올 합성공정 31

2. 메탄올 합성촉매 32

가. 메탄올 합성촉매의 역사 32

나. 촉매 활성점 34

다. 촉매 특성화 35

3. 메탄올 합성반응의 메카니즘 36

가. 반응 메카니즘 연구 36

나. 반응 Kinetics 41

제2절 메탄올 전환반응 47

1. 합성연료를 제조하기 위한 공정 49

가. Mobil 사의 MTG(Methanol to Gasoline) 공정 49

나. Topsoe(이미지참조)의 일관화된 가솔린 공정 49

다. MTO(Methanol to Olefin) 공정 50

라. Ethanol to Gasoline 52

마. Integrated Fischer-Tropsch/Zeolite 공정 52

2. 반응 메카니즘 53

3. 촉매 및 생성물 분포 56

4. 제올라이트 57

가. 제올라이트와 분자체 57

나. 분류와 구조 58

다. 제올라이트의 합성 63

제3절 혼성촉매를 이용한 탄화수소의 직접합성 71

제3장 실험 73

제1절 메탄올 합성 73

1. 촉매의 제조 및 특성분석 73

가. 촉매 제조 73

나. 촉매 특성분석 75

2. 반응실험 75

3. 메커니즘 분석 79

제2절 메탄올 전환 80

1. 촉매의 제조 및 특성분석 80

가. 촉매 제조 80

나. 촉매의 특성분석 83

2. 반응실험 85

가. 반응 실험장치 85

나. 반응 실험방법 85

제3절 혼성촉매 88

1. 혼성촉매의 제조 88

2. 반응실험 88

제4장 결과 및 고찰 89

제1절 메탄올 합성반응 89

1. 촉매 특성분석 89

가. 촉매 표면적 89

나. X-선 회절 분석 93

2. 반응실험 결과 103

3. 메커니즘 분석 - I 122

가. 온도에 따른 영향 122

나. 시간에 따른 영향 128

4. 메커니즘 분석 - II 130

가. 기상 생성물의 변화 132

나. Transmission FT-IR을 이용한 반응 중간체 연구 139

제2절 메탄올 전환반응 146

1. 촉매 특성분석 146

가. X­선 회절 분석 146

나. 주사 전자 현미경[원문불량;p.150~151] 146

다. 암모니아 TPD 154

라. FT-IR 154

2. 반응실험 결과 162

가. 촉매의 구조에 따른 반응성 162

나. 반응 온도에 따른 영향 166

다. 반응 시간에 따른 활성 변화 171

라. 열처리에 의한 활성 변화 179

제3절 혼성촉매를 이용한 탄화수소의 직접합성 181

1. 혼성촉매의 반응 활성 181

가. Cu/ZnO/ZrO₂+ MFI 계로 이루어진 혼성촉매 181

나. Cu/ZnO/ZrO₂+ SAPO 계로 이루어진 혼성촉매 183

다. Cu/ZnO/Ga₂O₃+ zeolite 계로 이루어진 혼성촉매 183

2. 온도에 따른 반응 활성 183

가. Cu/ZnO/ZrO₂+ MFI 계로 이루어진 혼성촉매 183

나. Cu/ZnO/ZrO₂+ SAPO 계로 이루어진 혼성촉매 190

3. 압력에 의한 영향 190

4. 산량에 따른 영향 197

5. 신촉매 활성 성분 조사 197

6. 비활성화 연구 209

7. 촉매층 배열의 영향 209

8. 탄화수소 직접합성반응의 반응경로 해석[원문불량;p.215] 215

9. 최적 혼성촉매의 선정 221

제5장 결론 223

제1절 메탄올 합성반응 223

제2절 메탄올 전환반응 223

제3절 혼성촉매를 이용한 탄화수소의 직접합성 224

제6장 참고문헌 225

Table 1. IR bands of various chemical species (unit :cm-1(이미지참조)) 42

Table 2. Typical structures in AlPO₄­based molecular sieves 62

Table 3. Organic amines forming two structure types 69

Table 4. Factors influencing zeolite crystallization 69

Table 5. Relationship between structure and template 70

Table 6. Operating conditions of gas chromatograph 78

Table 7. Molar ratio of reaction mixtures and reaction conditions 82

Table 8. Catalyst surface area of binary catalyst 90

Table 9. Catalyst surface area and copper surface area of CuO/ZrO₂catalyst (Precursors:copper acetate and zirconyl nitrate) 91

Table 10. Catalyst surface area of CuO/ZrO₂ catalyst (Precursors : copper nitrate and zirconyl nitrate) 92

Table 11. Catalyst surface area according to precipitating condition (CuO/ZrO₂ (80:20 wt%) catalyst) 94

Table 12. Catalyst surface area of ternary catalyst 95

Table 13. Copper surface area of ternary catalyst 96

Table 14. Catalyst surface area of CuO/ZrO₂/ZnO catalysts 97

Table 15. Catalytic activities of binary catalysts 105

Table 16. Activity of CuO/ZrO₂ catalyst (Copper precursor : Cu acetate) 106

Table 17. Activity of CuO/ZrO₂ catalyst (Copper precursor:Cu nitrate) 107

Table 18. Catalytic activities according to catalyst synthesis method (precipitating condition); CuO/ZrO₂ (80:20 wt%) catalysts 111

Table 19. Catalytic activities of CuO/ZnO system 112

Table 20. Product distribution of methanol conversion over various catalysts 164

Table 21. Product distribution of methanol conversion over MFI-type catalysts 165

Table 22. Product distribution of methanol conversion over SAPO-34 with different ratios of SiO₂/Al₂O₃ 167

Table 23. CO₂ hydrogenation over hybrid catalysts composed of Cu/ZnO/ZrO₂ and metallosilicates 182

Table 24. CO₂ hydrogenation over hybrid catalysts composed of Cu/ZnO/ZrO₂ and SAPOs 184

Table 25. CO₂ hydrogenation over hybrid catalysts in change of Cu­based catalysts 185

Table 26. CO₂ hydrogenation over hybrid catalysts composed of Cu/ZnO/ZrO₂ and SAPOs with SiO₂/Al₂O₃ 198

Table 27. CO₂ hydrogenation over hybrid catalysts composed of Cu/ZnO/ZrO₂ and SAPO-44 199

Table 28. BET surface of various catalysts 200

Table 29. CO₂ hydrogenation over hybrid catalysts composed of CuZnOZrO₂ and HZSM­5, Cu/HZSM­5 and Zn/HZSM­5 207

Table 30. CO₂ hydrogenation over hybrid catalysts composed of Cu/ZnO/ZrO₂ and Cu/SAPOs 208

Table 31. Comparison of physical(phyical) characteristics of hybrid catalyst between fresh catalyst and deactivated catalyst 211

Table 32. Comparison of physical(phyical) characteristics of hybrid catalyst between fresh catalyst and deactivated catalyst 211

Table 33. Comparison of hybrid catalyst in the single bed with the follow-bed arrangement 214

Table 34. CO₂ hydrogenation over hybrid catalyst composed of CuZnOZrO₂ and HZSM-5 with CO 216

Table 35. Effect of water addition on the methanol conversion over hybrid catalyst composed of CuZnOZrO₂ and HZSM-5[원문불량;p.215] 217

Table 36. CO₂ hydrogenation over hybrid catalysts with ethene cofed 218

Fig. 1. Rake mechanism 55

Fig. 2. Carbon pool mechanism 55

Fig. 3. Perspective view of ZSM-5 structure 64

Fig. 4. Perspective view of AlPO₄-5 structure 65

Fig. 5. Perspective view of SAPO-34(chabazite) 66

Fig. 6. Framework structure of SAPO-34(CHA) and AlPO₄-18(AEI) 67

Fig. 7. Schematic diagram of apparatus for FEAG process 74

Fig. 8. Schematic diagram of apparatus for CO₂ hydrogenation 76

Fig. 9. Schematic diagram of stainless-steel reactor 77

Fig. 10. Schematic diagram of apparatus for NH₃ TPD 84

Fig. 11. Schematic diagram of the in-situ FT­IR cell 86

Fig. 12. Schematic diagram of apparatus for methanol conversion reaction 87

Fig. 13. XRD patterns of CuO/ZrO₂ catalysts; precursors, Cu acetate and Zr nitrate 98

Fig. 14. XRD patterns of CuO/ZrO₂/MexOy(이미지참조) ternary catalysts 99

Fig. 15. XRD patterns of CuO/ZnO/Al₂O₃(60:30:10 wt%) and CuO/ZnO/Cr₂O₃(60:30:10 wt% ) 100

Fig. 16. XRD patterns of CuO/ZrO₂/ZnO catalysts; 60 wt% CuO 101

Fig. 17. XRD patterns of CuO/ZrO₂/ZnO catalysts; constant CuO/ZrO₂ ratio(80:20 wt%) 102

Fig. 18. Catalytic behavior according to time on stream; cat., CuO/ZrO₂/ZnO(80:20:20 wt%); temp., 250℃; press., 22atm; W/F, 2.07 g-cat. hr/mol 104

Fig. 19. Influence of CuO content on catalytic behaviors of CuO/ZrO₂ binary catalysts; temp., 250℃; press., 22atm; W/F, 2.07 g-cat.·hr/mol 108

Fig. 20. Influence of temperature on catalytic behaviors of CuO/ZrO₂(80:20 wt%) catalysts synthesized from different Cu precursors; press., 22atm; W/F, 2.07 g-cat.·hr/mol 109

Fig. 21. Dependence of catalytic behavior on Cu surface area over CuO/ZrO₂ binary catalysts; temp., 250℃; press., 22atm; W/F, 2.07 g-cat.·hr/mol 113

Fig. 22. Methanol yield vs. Cu surface area; CuO/ZrO₂/MexOy(이미지참조) ternary catalysts; temp., 250℃; press., 22atm; W/F, 2.07 g-cat.·hr/mol 114

Fig. 23. Influence of the addition of ternary component on catalytic behavior of CuO/ZrO₂/MexOy(이미지참조) catalysts; temp., 250℃; press., 22atm; W/F, 2.07 g-cat.·hr/mol 115

Fig. 24. Dependence of catalytic behavior on temperature over CuO/ZrO₂/MexOy(이미지참조) ternary catalysts; press., 22atm; W/F, 2.07 g-cat.·hr/mol 116

Fig. 25. Catalytic behaviors of CuO/ZnO/Al₂O₃(60:30:10 wt%) and CuO/ZnO/Cr₂O₃(60:30:10 wt%); press., 22atm; W/F, 2.07 g-cat.·hr/mol 117

Fig. 26. Catalytic behavior of CuO/ZnO/Ga₂O₃(60:30:10 wt%) according to time on stream 119

Fig. 27. Influence of ZnO/ZrO₂ ratio on catalytic behavior of CuO/ZrO₂/ZnO catalyst with constant CuO content; 60wt% CuO; temp., 250℃; press., 22atm; W/F, 2.07 g-cat.·hr/mol 120

Fig. 28. Influence of ZnO addition on the catalytic behavior of CuO/ZrO₂/ZnO catalyst with constant CuO/ZrO₂ ratio (80:20 wt%); temp., 250℃; press., 22atm, W/F, 2.07 g-cat.· hr/mol 121

Fig. 29. Dependence of catalytic behavior on pressure; cat., CuO/ZrO₂/ZnO(80:20:40 wt%); temp. 250℃; W/F, 2.07 g-cat.·hr/mol 123

Fig. 30. Influence of contact time(W/F) on catalytic behavior; cat., CuO/ZrO₂/ZnO(80:20:40 wt%); temp., 250℃;press., 22atm 124

Fig. 31. FTIR spectra during CO₂ hydrogenation over Cu/SiO₂ catalyst at 35℃ and 1 atm 125

Fig. 32. FTIR spectra during CO₂ hydrogenation over Cu/SiO₂ catalyst under 1 atm at (a) 35℃ (b) 55℃ (c) 75℃ (d) 85℃ (e) 95℃ 126

Fig. 33. FTIR spectra during CO₂ hydrogenation over Cu/SiO₂ catalyst under 1 atm at (a) 120℃ (b) 140℃ (c) 160℃ (d) 180℃ (e) 240℃ 127

Fig. 34. Mass spectra during CO₂ hydrogenation over Cu/SiO₂ catalyst for 60 min 129

Fig. 35. FTIR spectra during CO₂ hydrogenation over Cu/SiO₂ catalyst under 1 atm and 140℃ for (a) 1 min (b) 3 min (c) 6 min (d) 10 min (e) 20 min (f) 40 min 131

Fig. 36. CO₂ conversion and CH₃OH yield over CuO/ZrO₂(7:93 wt%) catalyst according to temperature 133

Fig. 37. CH₃OH selectivity over CuO/ZrO₂(7:93 wt%) catalyst according to temperature 134

Fig. 38. CO₂ conversion and CH₃OH yield over CuO/ZnO/ZrO₂(7:3:90 wt%) catalyst according to temperature 135

Fig. 39. CH₃OH selectivity over CuO/ZnO/ZrO₂(7:3:90wt%) catalyst according to temperature 136

Fig. 40. Turnover frequencies of methanol synthesis reaction and net amount of reverse water gas shift reaction over CuO/ZrO₂(7:93 wt%) catalyst according to temperature 137

Fig. 41. Turnover frequencies of methanol synthesis reaction and net amount of reverse water gas shift reaction over CuO/ZnO/ZrO₂(7:3:90 wt%) catalyst according to temperature 138

Fig. 42. Turnover frequencies of methanol synthesis reaction and net amount of reverse water gas shift reaction over CuO/ZrO₂(7:93 wt%) catalyst according to time on stream 140

Fig. 43. Turnover frequencies of methanol synthesis reaction and net amount of reverse water gas shift reaction over CuO/ZnO/ZrO₂(7:3:90 wt%) catalyst according to time on stream 141

Fig. 44. IR spectrum during CO₂ hydrogenation over Cu/ZrO₂(7:93 wt% ) catalyst at 260 ℃ 142

Fig. 45. IR spectra during CO₂ hydrogenation over Cu/ZrO₂(7:93 wt%) catalyst at (a) 30 ℃ (b) 70 ℃ (c) 260 ℃ 144

Fig. 46. IR spectra during CO₂ hydrogenation over Cu/ZrO₂(7:93 wt%) catalyst at (a) 30 ℃ (b) 70 ℃ (c) 260 ℃ 145

Fig. 47. X-ray diffraction pattern of MFI-type catalysts a)ZSM-5, b)Fe-silicate, c)Ga-silicate, d)Zn-silicate 147

Fig. 48. X-ray diffraction pattern of SAPO-5 148

Fig. 49. X-ray diffraction pattern of SAPO-18 148

Fig. 50. X-ray diffraction pattern of SAPO-34 149

Fig. 51. X-ray diffraction pattern of SAPO-44 149

Fig. 52. X-ray diffraction pattern of MFI-type catalysts before and after heat treatment: calcination at 725℃ for 2hours a)ZSM-5, b)Fe-silicate, c)Ga-silicate, d)Zn-silicate Before treatment: bottom, After treatment: top 150

Fig. 53. X-ray diffraction pattern of SAPOs before and after heat treatment: calcination at 725℃ for 2hours a)SAPO-18, b)SAPO-34, c)SAPO-44 Before treatment: bottom, After treatment: top 151

Fig. 54. SEM images of MFI-type catalysts a)ZSM-5, b)Fe-silicate, c)Ga-silicate, d)Zn-silicate[원문불량;p.150] 152

Fig. 55. SEM images of SAPOs a)SAPO-5, b)SAPO-18, c)SAPO-34, d)SAPO-44[원문불량;p.151] 153

Fig. 56. NH₃ TPD of MFI-type catalysts 155

Fig. 57. NH₃ TPD of SAPO-18 156

Fig. 58. NH₃ TPD of SAPO-5 with different SiO₂/Al₂O₃ 157

Fig. 59. NH₃ TPD of SAPO-34 with different SiO₂/Al₂O₃ 158

Fig. 60. NH₃ TPD of SAPO-44 with different crystallization time 159

Fig. 61. Framework IR spectra(sepctra) of SAPO-5 and SAPO-44 160

Fig. 62. Framework IR spectra(sepctra) of HZSM-5 and H-Ga-Silicate 161

Fig. 63. FT-IR spectra of zeolites following pyridine adsorption and desorption at 150℃ 163

Fig. 64. Conversion with temperature over HZSM-5, metallosilicates and SAPOs 168

Fig. 65. Lower olefins selectivity with temperature over HZSM-5, metallosilicates and SAPOs 169

Fig. 66. Lower olefins and aromatics selectivity with temperature over HZSM-5 170

Fig. 67. Lower olefins and aromatics selectivity with temperature over Fe-silicate 172

Fig. 68. Lower olefins and aromatics selectivity with temperature over Ga-silicate 173

Fig. 69. Lower olefins and aromatics selectivity with temperature over SAPO-5 174

Fig. 70. Lower olefins selectivity with temperature over SAPO-18 175

Fig. 71. Lower olefins selectivity with temperature over SAPO-34 176

Fig. 72. Lower olefins selectivity with temperature over SAPO-44 177

Fig. 73. Conversion with time-on-stream over various catalysts 178

Fig. 74. Conversion with time-on-stream over heat-treated catalysts(catalyst s) 180

Fig. 75. Effect of temperature on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/ZrO₂ and HZSM-5; Pressure: 28atm., H₂/CO₂: 3, W/F: 20g-cat.h/mol 186

Fig. 76. Effect of temperature on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/ZrO₂ and Ga-Silicate; Pressure: 28atm., H₂/CO₂: 3, W/F:20g-cat.h/mol 187

Fig. 77. Effect of temperature on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/Ga₂O₃ and HZSM-5; Pressure: 28atm., H₂/CO₂: 3, W/F: 20g-cat.h/mol 188

Fig. 78. Effect of temperature on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/ZrO₂ and Fe-Silicate; Pressure: 28atm., H₂/CO₂: 3, W/F: 20g-cat.h/mol 189

Fig. 79. Effect of temperature on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/ZrO₂ and SAPO-5; Pressure: 28atm., H₂/CO₂: 3, W/F: 20g-cat.h/mol 191

Fig. 80. Effect of temperature on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/ZrO₂ and SAPO-34; Pressure: 28atm., H₂/CO₂: 3, W/F: 20g-cat.h/mol 192

Fig. 81. Effect of temperature on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/ZrO₂ and SAPO-44; Pressure: 28atm., H₂/CO₂: 3, W/F: 20g-cat.h/mol 193

Fig. 82. Effect of temperature on CO₂ hydrogenation over Cu/ZnO/ZrO₂ Pressure: 28atm., H₂/CO₂: 3, W/F: 20g-cat.h/mol 194

Fig. 83. Effect of temperature on methanol conversion over SAPO-5; Pressure: 1atm., W/F: 20g-cat.h/mol, methanol/He: 1/17 195

Fig. 84. Effect of pressure on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/Ga₂O₃ and SAPO-34; Pressure: 28atm., H₂/CO₂: 3, W/F: 20g-cat.h/mol 196

Fig. 85. NH₃ TPD of hybrid catalyst composed of Cu/ZnO/ZrO₂ and SAPO-34 201

Fig. 86. NH₃ TPD of hybrid catalyst composed of Cu/ZnO/ZrO₂ and HZSM-5 202

Fig. 87. NH₃ TPD of hybrid catalysts 203

Fig. 88. Effect of mixing ratio on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/ZrO₂ and SAPO-34; Pressure : 28atm, H₂/CO₂:3, W/F :20g.cat.h/mol. 205

Fig. 89. Effect of time-on-stream on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/ZrO₂ and SAPO-34;Pressure : 28atm, H₂/CO₂: 3, W/F:20g-cat.h/mol 206

Fig. 90. NH₃ TPD of hybrid catalyst composed of Cu/ZnO/ZrO₂ and SAPO-34 with mixing ratio 210

Fig. 91. NH₃ TPD of hybrid catalysts composed of Cu/ZnO/ZrO₂ and SAPO-34 with time­on­stream 212

Fig. 92. Effect of time-on-stream on CO₂ hydrogenation over hybrid catalyst composed of Cu/ZnO/ZrO₂(FEAG method) and SAPO-34;Pressure:28atm, H₂/CO₂: 3, W/F:20g-cat.h/mol 213

Fig. 93. Reaction mechanisms of methanol conversion 220

이용현황보기

이용현황 테이블로 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
0000759079 665.89 ㅌ363ㅇ [서울관] 서고(열람신청 후 1층 대출대) 이용가능
0000759080 665.89 ㅌ363ㅇ [서울관] 서고(열람신청 후 1층 대출대) 이용가능

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기